VOLUME 60, NUMBER 16

PHYSICAL REVIEW LETTERS

18 APRIL 1988

Where the Sign of the Metric Makes a Difference
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The groups Pin(n,m) and Pin(m,n) are not isomorphic, and the obstruction classes to their respective
bundles are different. It follows that for nonorientable superstring theories, the contributions to a Po-
lyakov path integral from surfaces with positive metric are different from the contributions from those

with negative metrics.

PACS numbers: 02.40.+m, 11.17.+y

Since Dirac, physicists have known how to define spi-
nors in flat space-time. Spinors transform under the
group Spin(m,n), the double cover of the appropriate ro-
tation or Lorentz group SO(m,n), and Spin groups can
be constructed explicitly from the Clifford algebra of the
y matrices.

For general relativity and for superstring theory, how-
ever, one must consider spinors in curved backgrounds.
The questions here are more subtle. The flat-space con-
struction still applies locally, but there can be a topologi-
cal obstruction to its global extension: It is not always
possible to ensure that locally defined spinors match up
consistently between coordinate patches. For orientable
manifolds, the obstruction is known as the second
Stiefel-Whitney class, wj; on manifolds for which w0,
ordinary spinors do not exist.

For nonorientable manifolds, even the local construc-
tion is more difficult. One must now start with the dou-
ble cover Pin(n,m) of O(m,n), since the reduction of
O(n,m) to SO(n,m) can no longer be defined globally.'
The topological obstruction to the existence of spinors
now depends on the choice of m and n. Surprisingly, this
means that the overall sign of the metric is important.

At first sight it would not seem to make any physical
difference whether one chooses a metric g4z with signa-
ture (n plusses, m minuses) or (m plusses, n minuses).
In particular, the groups O(n,m) and O(m,n) which
leave invariant the quadratic forms defined respective-
ly by metrics of signatures (n,m) and (m,n) are iso-
morphic. So are the double coverings Spin(n,m) and
Spin(m,n) of SO(n,m) and SO(m,n), respectively.
However, the double coverings Pin(n,m) and Pin(m,n)
of O(n,m) and O(m,n) are not isomorphic. This is not
unexpected, since the corresponding Clifford algebras
@(n,m) and @(m,n) are not isomorphic. A simple ex-
ample will illustrate this point. Pin(0,1)=Pin*(1) con-
sists of four elements *+ 1, & ¥ such that

r’=1
hence,
Pin*t (1) ~2,x7,.

Pin(1,0)=Pin (1) consists of four elements *+1,+y

such that
r’=-1
hence,
Pin " (1) ~Z,.

Our convention is

Y4Bt yBYa= —28481. n
If we had used

YayBtyByYa=2g481, 2)

the results would have been interchanged but the issue
would remain the same. It is, in general, useful to label
a Clifford algebra @(Q) by the quadratic form Q, which
reflects the combined choice of (n,m) vs (m,n) and Eq.
(1) vs Eq. (2). However, in the discussion below of
superstrings, it will be convenient to treat these two
choices separately.

Since the groups Pin*(n) and Pin ~(n) are different,
the obstruction classes for Pin* bundles and Pin ~ bun-
dles are likely to be different. Indeed, Karoubi? has
shown? that their obstruction classes are respectively

w2 (Pin*(n))
and
w2(Pin " (n))+w;(Pin ~ (n)) Uw,(Pin ~ (n)),

where w; and w, are the first and second Stiefel-
Whitney classes.* The obstruction class for a Pin(m,n)
bundle with m and n both nonvanishing is more compli-
cated and will not be discussed further here.

The first Stiefel-Whitney class is the obstruction class
to orientability. A manifold is orientable if and only if
the first Stiefel-Whitney class of its frame bundle is trivi-
al; one then writes w;=0. The first Stiefel-Whitney
class can be constructed explicitly from the determinants
of a family of transition functions of the bundle. The
second Stiefel-Whitney class can be constructed explicit-
ly from the lifts of these transition functions to a
Pin(n,m) bundle.

Simple statements can be made about the obstruction
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to Pin *(2) bundles over two-dimensional closed sur-
faces without boundary. For such surfaces, w, and
w1 Uw, are both equal to the Euler characteristic ¥ mod
2 of the surface, and so

w2+w1le =2X mod 2 =0,

and one can always construct a Pin ~ (2) structure. The
second Stiefel-Whitney class vanishes if and only if X is
even. The Euler characteristic X is always even if the
surface is orientable. Hence, an obstruction to a
Pin *(2) structure can exist only for a nonorientable sur-
face. Any nonorientable surface can be constructed ei-
ther from the Klein bottle or from the real projective
two-plane via connected sums with orientable surfaces.
To determine the closed nonorientable surfaces which do
not admit a Pin*(2) structure it is sufficient to refer to
the following table.

RP(2) Klein bottle
wi =0 =0
wiUw, 1 0
W) 1 0

The Euler characteristic of the connected sum of two
surfaces is

X(M]#Mz) =Z(M1)+X(M2)—2.

Thus, the connected sum of any orientable closed two-
surface with RP(2) does not admit a Pin*(2) structure.
This result has important implications for string
theory. The Polyakov path integral for the Neveu-
Schwarz-Ramond superstring is ordinarily defined as an
integral over two surfaces with positive definite metrics,
with convention (2) for the Clifford algebra. These
choices imply that the relevant Pin group is Pin*(2).
Hence, pinors cannot be constructed over all surfaces,
and the theory is undefined on connected sums of orient-
ed closed two surfaces with RP(2). Our results suggest
that one should start instead with surfaces with negative
definite metrics, for which Pin ~(2) structures always ex-
ist. For orientable surfaces, w; Uw; =0, and Pin T bun-
dles are reducible to a unique spin bundle; hence, for
such surfaces, the theory with negative definite metrics is
equivalent to the standard theory. For nonorientable
surfaces, however, the two versions are inequivalent. We
are thus led to the surprising conclusion that the overall
sign of the metric makes a difference for string theory.
Rather than changing the sign of the metric, one
might instead change the Clifford algebra convention
from (2) to (1), but the resulting theory would no longer
be supersymmetric. Indeed, there are several sign
choices to be made in the choice of a superstring
Lagrangean, but not all are independent. If we set

1600

€; =t 1, the Lagrangean may be written
=—368"%0,X0X— 5i¥y?9,¥+other terms,
where

{va, 78} =2€2848

and
v=v(C with C=¢CT

Given the signature of the metric, the quantity e3 is
determined uniquely by the requirement that Majorana
pinors exist locally.® Further, the Lagrangean .L is in-
variant under the global supersymmetry transformation

SX*=av* SV *=iy194X" a
if and only if
€) = €1€3.

Hence, if the Clifford-algebra convention (the sign of €;)
is changed, the sign of €, must also be. The combined
effect of these changes of ¢; and ¢ is the same as that of
simply changing the sign of the metric.

Grinstein and Rohm® have discovered a related
difficulty in constructing pinors and have concluded that
the Polyakov path integral for type-I superstrings is in-
consistent as it stands. They consider only what we call
Pin " (2) bundles; but in an addendum (to appear) they
note that a different choice of parity would have been
equivalent to choosing a different Pin(2) group.

The difference between Pin* and Pin ~ has been noted
in a different context by Dabrowski and Percacci’ in a
preprint which has recently come to our attention. They
have computed the transformations of Pin*(2) and
Pin ~ (2) structures under the action of diffeomorphisms
of their base manifolds not isotopic to the identity. Their
obstruction criterion for Pin*(2) structures is given in
terms of the genus of the base manifold. It is identical to
ours if one interprets® the “genus of a nonorientable sur-
face” as the genus of its orientable double covering.

Consultation with Gary C. Hamrick and a letter from
Simone Gutt have played a key role in our investigation.
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