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Simulations without Critical Slowing Down
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We have developed a novel simulation method that combines a multigrid technique with a stochastic
blocking procedure. Our algorithm eliminates critical slowing down completely, as demonstrated by
simulations of the two-dimensional Ising model at criticality.
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Considerable effort has been devoted in recent years to
simulations of various problems, that range from calcu-
lating hadron masses, through equilibrium phase transi-
tions, to a variety of nonequilibrium, complex time-
dependent phenomena. 23 Of the many problems that
hinder large-scale simulations we address that of critical
slowing down (CSD). This phenomenon gives rise to a
divergent relaxation time r as the critical point is ap-
proached. Thus, the times needed to equilibrate the sys-
tem and to generate statistically independent configu-
rations (at equilibrium) become exceedingly large. At
criticality, r grows as

r —L',

with the linear size L of the system. Here z is measured
in units that scale with the total number of sites (i.e.,
Ld), and z is the dynamic critical exponent.

In this Letter we present a method that overcomes this
difficulty. While a number of recently reported simula-
tion techniques5 have partially eliminated CSD, this is
the first simulation that evades CSD completely for a
nontrivial model. We illustrate the method by simulating
the d=2 Ising model at the critical temperature of the
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FIG. 1. Relaxation time r vs (linear) system size L. Three
methods are compared: Metropolis algorithm (Ref. 7),
Swendsen and Wang's method (Ref. 6) (SW), and the mul-
tigrid Monte Carlo technique (MGMC).

infinite lattice. The equilibration time for the energy is
found to be constant, r = 3.0, for lattices of linear sizes
8 ~ L ~ 128 (see Fig. 1). The method used is a com-
bination of a multigrid method ' with a stochastic
blocking (coarsening) technique. s"' General features
of our method (applicable to discrete or continuous-state
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Hamiltonians, and a wide class of coarse-to-fine interpo-
lations) were first presented recently.

The structure of this Letter is as follows: First, we

provide an elaborate description of our algorithm and
show that it satisfies detailed balance. Details of the
simulations mentioned above are given next. Finally, we

explain why our procedure does eliminate CSD com-
pletely, whereas the Swendsen-Wang method (SW),
which uses stochastic blocking without incorporating
multigrid ideas, does not.

Description of the algorithm I.n—our coarsening pro-
cedure, simulation of the full Hamiltonian is replaced by
simulation of a stochastically generated, simplified Ham-
iltonian, over a restricted space with fewer degrees of
freedom. Write P =So+ V, where factors of I/kaT
have been absorbed into P and where So is somehow
easier to simulate than the original S. Assume that the
system is in some state Q. We "kill" the interaction
V either by "deleting" it with probability pd =Cv
&&exp[V(Q)l or by "freezing" it with probability pf
=1 —pd. If the interaction is frozen, only states Q' with
V(Q') = V(Q) are considered in the ensuing simulation.
If the interaction is deleted, no such restriction is placed
on the states. In either case, the thermodynamics is sub-

sequently governed only by the simplified Hamiltonian
ffo. One must choose Cr so that pd, pf e [0,1]. The
largest choice of Cq produces the best statistics.

In practice, Po is still nontrivial to simulate (without
CSD) and so additional terms of the Hamiltonian must
be killed. After killing all the interactions in S, one ar-
rives at a system which is completely decoupled —and so
is trivial to simulate —but is subject to an arbitrary set of
restrictions on its states.

For the two-dimensional ferromagnetic Ising model
P = —gI;llKls;si, we kill the interactions Kls;si one at
a time. The optimal probability for deletion, then, is

pd =exp[ —K;, (I+s;s, )). Interactions between antipar-
allel spins will always be deleted; only parallel spins can
be frozen together. We may kill the interactions, gen-
erate a new configuration for the decoupled system, and
then return to the full Hamiltonian to continue the simu-
lation. This is the procedure followed by SW; it still
suffers from CSD, although with a considerably reduced
dynamical exponent.

To eliminate CSD completely, we combine this sto-
chastic blocking procedure with multigrid ideas. As an
example, consider Fig. 2(a). Choose the boxed sites as
our coarse lattice, which has (L/b) spins; here the
length rescaling factor is b =2. We coarsen by consider-
ing all pairs of coupled sites i,j If both i a. nd j have al-
ready been frozen to coarse spins, we move on to the next
pair; otherwise kill K;is;si. Figure 2(a) is a possible
coarsening. Single (double) lines between sites indicate
living (frozen) bonds; deleted bonds are not marked.
Each cluster of fine spins connected by frozen bonds con-
stitutes an irregular, stochastically generated block. A
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FIG. 2. Coarsening of a fine-spin configuration. Boxed spins
constitute the coarse lattice. (a) Outcome of a possible coar-
sening. Single (double) lines denote living (frozen) bonds; de-
leted bonds are not marked. (b) Coarse lattice. Numerals
near bonds denote the number of fine couplings added together
to form the associated coarse bond.

block is either frozen to (and viewed as) a single coarse
spin or it is completely decoupled.

Finally, the coarse Hamiltonian is constructed: The
coupling between coarse spins s; and si is the sum of the
living couplings that connect fine spins associated with
coarse spins s; and sl. This is illustrated in Fig. 2(b):
Numerals on the lines between sites indicate the number
of fine couplings that contribute to the coarse bond. The
new Hamiltonian is inhomogeneous, and may contain
long-range interactions.

In addition to coarsening the system, we need "un-
coarsening" and Metropolis procedures as well. To "un-
coarsen" the system, decoupled blocks are set to some
arbitrary value of spin, all fine-lattice spins take the
value of the block spin to which they were frozen, and
the fine-lattice couplings are restored. Metropolis up-
dates may be performed at any length scale by use of a
standard Metropolis algorithm'3 on the block spins at
that scale, with the corresponding Hamiltonian.

Our dynamic procedure "cycles" through all length
scales, starting from the finest. At each intermediate
length scale, the system is coarsened y times before it is
uncoarsened (see Fig. 3). At the coarsest level all blocks
are decoupled, and each time this level is reached, it is
immediately uncoarsened. The cycle ends when the
finest level is reached. A few Metropolis sweeps are per-
formed at each level. These sweeps, however, are not
essential to elimination of CSD. The SW procedure6
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L=8

FIG. 3. An example of a cycle on an 8x8 lattice, with

length rescaling factor b =2 and @=2.

corresponds to y=l with b=L, going directly from the
finest to the coarsest level and back, without Metropolis
sweeps at the finest level.

Proof of detailed balance. —Clearly, our procedure is

strongly ergodic since there is always a nonzero probabil-
ity that no restriction will be placed on the simulation,
allowing nonzero transition probabilities between all

states. Consider a transition generated by coarsenings

T(Q Q') =C e Q To(Q Q'),

where To are transition probabilities with Po. Hence,

T(g~ g~) ev(Q)e -tto(Q')
e -s(Q )

T(g' g) v(Q') &o(Q) e s(Q) '

(2)

(3)

Alternatively, if V(Q) =V(Q'), the interaction V may
either be deleted for frozen:

and a Metropolis step, which satisfies detailed balance
with respect to the coarse Hamiltonian. It can be viewed

as taking place between the two corresponding fine-spin

states, and we want to show that detailed balance with

respect to the fine-spin Hamiltonian is satisfied. Once
proven, this implies that the transitions satisfy detailed
balance with respect to the ftnest Hamiltonian.

Start from some level in state Q with a Hamiltonian
P, and "kill" an interaction V to get the coarse Hamil-
tonian Po S —V. Then a transition from Q to another
state Q', with V(Q)~V(Q'), can take place only if V
has been deleted:

T(Q~ Q') =Cve Q To(Q~ Q')+(1 Cve Q )T—o(Q~ Q')

=[Cve Q To(g'~ Q)+(1 —Cve Q )To(Q'~ Q)]e ' /e

where To are transition probabilities with the reduced
Hamiltonian over the restricted space. Remembering
that V(g') = V(Q) yields

T(Q Q') =T(Q' Q)e Q /e Q, (5)

completing the proof of detailed balance.
Details of simulations We s.i—mulated the d=2 Ising

model on square lattices of linear size 8 ~ L ~ 128 with

periodic boundary conditions. A cycle of y=2 with re-

scaling factor b =2 was used. At each level, one Monte
Carlo sweep was performed. Starting from a fully mag-
netized state we measured the decay of the energy to its
equilibrium value, ' averaged over an ensemble of up to
100 systems. From such data we extracted the relaxa-
tion times [z(L)j, and found z= 3 Ofor all lattic. e sizes
Figure 1 is a log-log plot of z(L) measured with three
different algorithms: standard Metropolis procedure
(z = 2.1), the SW algorithm (z =0.35), and our
method (z =0).

Why does it work? —To eliminate CSD, one must al-
low fiips of large domains with high acceptance ratios.
Had our coarsening procedure created lattices with

higher connectivity or stronger bonds than those of the
fine lattices, the acceptance ratios for the large-scale
moves would have become prohibitively small. The pro-
duction of lower connectivities or weaker couplings
would have generated decoupled blocks at short length
scales, and large-scale Ihps would not have been possible.
Hence, since our algorithm does produce z =0, we ex-
pected and indeed confirmed that our coarsening pro-
cedure yields similar distributions of bonds and connec-

tivities in lattices at different length scales.
The SW algorithm does not eliminate CSD complete-

ly. The reason for this is that coarsening introduces
spin-spin correlations on an average length scale of b
(the rescaling factor of the coarsening transformation)
by freezing spins on that scale. Equilibration of the
coarse lattice has no effect on these correlations. One
has to repeat the process of coarsening, equilibration,
and uncoarsening several times, in order to decorrelate
and equilibrate the fine lattice. Note, however, that in

each such step equilibration involves further coarsening,
for which the same considerations hold. Hence a nested
sequence of coarsening-equilibration-uncoarsening steps
is needed. Denote by zo(b) the number of coarsening-
equilibration-uncoarsening steps needed to eliminate
correlations on length scale b If we assum. e scale invari-
ance at criticality, i.e., that zo(b) is the same for all lev-
els in the hierarchy, ' the equilibration process described
above is precisely the cycle shown in Fig. 3, with y=zo.
Therefore, if such a cycle is used, the configuration of
the fine lattice becomes independent of the initial
configuration after zo cycles. To estimate zo, recall that
the SW procedure is one coarsening step with b =L,
yielding zo(L)-L ' . Combining scale invariance with
the SW result, we get zo(b) =b"". From the same
reasoning it follows that, if one uses a cycle with y & zo,
the number of cycles needed to decorrelate diverges as
I."" ' ". Hence, in order to equilibrate in a finite
number of cycles, y must satisfy the inequality y~ b"".
Since the time needed to complete a cycle (measured in
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steps per site) diverges (as L ~) if y) b, CSD is

eliminated completely only jf b ~ y (b". For the Is-
ing model, this condition translates to b ~ @&b for
d =2, and b ~ y & b for d =3. For the three-state
Potts model in two dimensions we must satisfy
bn6~ y&b . For values of b and y that do not satisfy
these bounds, we expect CSD. In particular, for the
three-state Potts model in d=2, with y=2 and b =4, we

expect to get i-L '" "=L '.
A more complete account of this work as well as de-

tailed tests of the scaling arguments given above will be
reported elsewhere. ' We are also working on optimal
coarsening procedures that reduce statistical fluctuations
and are starting simulations on the 2D XYmodel.
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