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Orbital Magnetoconductance in the Variable-Range-Hopping Regime
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The orbital magnetoconductance (MC) in the variable-range-hopping (VRH) regime is evaluated by
use of a model which approximately takes into account the interference among random paths in the hop-

ping process. Instead of logarithmic averaging the MC is obtained by the critical percolating resistor
method. The small-field MC is quadratic in H; it is positive deep in the VRH regime and changes sign
when the zero-field conductivity is high enough. This behavior (except for the sign change) and the
relevant magnetic field scale are in agreement with recent experiments. The calculated MC is always

positive for strong fields and is predicted to saturate at sufficiently large fields.

PACS numbers: 72.20.Dp, 05.60.+w, 71.55.Jv, 72.20.My

The study of the magnetoconductance (MC) in disor-
dered metals in the weak-localization regime has given
valuable insights on the interference processes in such

systems. Various electronic relaxation times have also
been determined with this method. There is no such de-

tailed understanding of the magnetotransport in the
strongly localized regime. Recent studies' have fo-
cused on the magnetotransport in the mesoscopic range
where the finite size of the sample is relevant. It is, how-

ever, also of interest to study the MC in a large, macro-
scopic, sample in the regime where thermal hopping
dominates the transport.

A recent experimental study of transport properties
of indium oxide samples in the variable-range-hopping
(VRH) regime reveals a positive MC. In the absence of
magnetic field, the conductance of these specimens
obeys Mott's VRH law, o =trnexp[ —(T/Tn)'I +')], in

two and three dimensions (d=2, 3) with 200~ Tn/T
~ 1000. The hopping distance RM extracted from the
data is typically of the order of 5-10(, where ( is the lo-
calization length. The behavior of the MC at low fields

is as follows: After an initial, fast dependence (H ?) at
extremely small fields, the MC becomes quadratic in the
magnetic field for a rather large range of the latter.
Studies of the dependence of the MC on the magnetic
field orientation relative to that of the film strongly indi-

cate that is results from an orbital, rather than a spin,
eff'ect. The change in the conductance due to the mag-
netic field is characterized by the flux NM=—HRP X'

through an efl'ective area of the order of RgX'I, where

Z is the microscopic length (i.e., the typical distance be-
tween impurities). The positiveness of the MC and the
anisotropy with respect to the magnetic field orientation
were also observed in earlier measurements on 2D Si-

inversion layers.
None of the theories known to us accounts for these

experimental data. Shklovksii and Efros6 and Suprapto
and Butcher predict a negative MC, due to the shrink-

age of the wave functions in the presence of magnetic
field. Nguyen, Spivak, and Shklovskii (NSS) consider
the effect of the interference among the various paths as-
sociated with the hopping between two sites at a distance
RM apart and a small energy separation of the order of a
few kBT. They find that the interference between all

possible paths within a cigar-shaped domain of length

RM and width (RMg) ' might change considerably the

hopping probability between two sites. Averaging nu-

merically the logarithm of the conductivity over many
random impurity realizations, in the presence of a mag-
netic field, they obtain under certain conditions a positive
MC which is linear in the field in the whole relevant field

range. This linearity is in qualitative disagreement with

the experimental results in Ref. 4 (see below). Both pos-
itiveness and linearity emerge from the logarithmic na-
ture of the averaging process.

Here we present a theory for the orbital MC in the
VRH regime, which yields the sign of the MC and the
quadratic field dependence over most of the weak-field

range, where the field scale is determined by the parame-
ter @M/Cn (4 =nhc/e being the quantum flux unit).
Furthermore, our model predicts a saturation of the MC
for NM/Nn»1. Spin effects have been treated in Ref. 2

and by Kamimura. ' Rather than employing the loga-
rithmic averaging, for which we know of no real
justification, our calculations are based on the critical
path analysis of Ambegaokar, Halperin, and Langer"
(see also Pollak' ) which we generalize to include the
effects of interference and magnetic field. A major
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difference between the results of NSS ' and our analysis
is that we find an H dependence at small fields rather
than an ~H ~

one. We shall later explain this overesti-
mate of the MC in the logarithmic averaging procedure.
The experimental results are certainly inconsistent with
the

~
H

~
behavior and are in reasonable agreement with

the quadratic dependence over most of the weak-field
range. The indicated faster-than-8 dependence at ex-
tremely small fields might be due to improbable long
jumps whose treatment is beyond the present analysis.

The conductivity of a sample in the hopping regime
may be analyzed in terms of an equivalent resistor net-
work' in which two sites are connected by a conductivi-

ty o,f =o0exp( —arf —pef) where rf is the distance
between the two sites, a = I/g, e; and ef are the site ener-

gies, e,f= ( f e; f
+

f ef f
+

f e; —ef f )/2, and a0 is some
constant having the dimensionality of a conductivity.
Following NSS we model each resistor by a square (a
cube in 3D) as shown in Fig. 1. The two sites i and f on
the opposite corners of the square represent the sites be-
tween which the hopping occurs. The rest of the sites
simulate all other scattering centers sampled by the hop-

ping electron. For each square we assume, following
NSS, a nearest-neighbor tight-binding Anderson mod-

el, ' H=g„etta„+g„&„V„„a„~a„,where V,„=V for
nearest neighbors and 0 otherwise. e„ is assumed to be
randomly distributed with zero mean and standard devi-
ation W. The localization length ( ( I) is determined

by (W/V) . For all resistors in the critical network, "
~
e; [ and

~ ef ~
are of the order of a few times kaT, much

smaller than the average energy spacing within a locali-
zation volume. The conductivity of the square is propor-
tional to '

~
I ~, where I is the effective matrix element

between the states localized at sites i and f. The main
contribution to I comes from the oriented paths between
i and f, excluding backwards steps. The corrections
due to winding paths will be briefly considered later.
The matrix element squared is given by

~
I I

'= V'(V/W)' ' g,J, exp(ip, )

/
p ~ ~

/
~ ~

v
~ + ~

~ g P,
V ~ ~ V

~ ~ ~

~ ~ V

FIG. 1. NSS (Refs. 8 and 9) model for a hop. The electron
hopping from site i to f samples all other scattering centers en
route. The conductivity is proportional to the sum over all pos-
sible paths leading from i to f.

quired by the yth path in the presence of a magnetic
field. Since the number of oriented paths, n, is exponen-
tial in N, it is possible to redefine a in the expression for
o,f such that

aif 00(1J I /n)exp( —arf Pe f), — (2)

with
~
J

~

2 =
~ Q„J„exp(ip„) ~

which is of the order of n

The quantity
~
J

~
is a random variable. Its probability

distribution leads to a probability distribution P(cr/ao, r)
for the dimensionless conductivity o/a0 and a spatial
separation r, and the dependence of the latter upon the
magnetic field will yield the MC. Ambegaokar, Halpe-
rin, and Langer" argue that the percolation condition
upon P(o/a0, r) determines the conductance of the sam-

ple. One should introduce the resistors into the network,
one by one, in an increasing order of resistivity, and the
conductivity of the sample would be given by the conduc-
tivity o, of the resistor which just makes the sample con-
nected. " The percolation threshold condition for the
case where the resistors have varying lengths is that the
total volume occupied by the resistors is a certain finite
fraction, Z„of the volume 0 of the system

Here

J„=Q [W/(e, —e„)]=g ( —W/. „)

f OO f+ OO

do r d(r )P(a/a0, r) =Z, .
g2d gO'e gP (3)

vE y v6 y

is the contribution of the yth path, v runs over the 2N
points on the path (excluding i), and p„ is the phase ac-

This is an implicit equation for o, . The dependence of
cr, on the magnetic field arises from the field dependence
Of P(a/a0, r).

The distribution P (a/a 0,r ) is given by

P OO Q OO

P(cr/o0, r) = d(y )Pl(y ~ r)„dt P2(t, r)b(a/o0 —y e '), (4)

where P&(y ~r) is the conditional probability of y for a given r, P2(t, r) is the joint probability of t and r,
t =arf+Pef, and y =

~
J

~
/n We calcul. ate the probability distribution P&(y ~

r) for a NSS square having n oriented
paths. By definition, J„is a random variable with zero mean and standard deviation of the order of 1. This implies at
zero field (by the central limit theorem) a Gaussian distribution for y, regardless of the exact form of the probability
distribution of J„. The MC is generated by the change in P~(y ~r) due to the magnetic field. One may conjecture
various probability distributions for J„, but for the sake of simplicity we assume P(J„)=I/(2n)' exp( —J„/2) and
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neglect possible correlations among the paths. Setting J=J'+iJ", one obtains

P (J',J '
~

r ) = (2') dJ—oo
dJ, exp —g J„l2 6 J' —g J„cosset„6 J"—g J„sing„

4 —oo =1 =1 =1
(5)

If we choose a gauge in which for any path with a phase p„ there is also a symmetric path with a phase p„= —p„, Eq.

(5) yields

exp[ —(y /4)(a +b )] y
2ab 4 b2

P2(t, r) =(3/2P W Q)(t —ar)8(t —ar),

where a n 'g„cos p„, b 1 —a and Ip is the
modified Bessel function of order zero. t & PWJ3 is found to be

In the weak field limit @M/@p«1 and y /(4b )» l.
Consequently,

(9)

p ( 2i )
exp[ y l2a
(2z) '"a iy i

2 y'

(7)

In the strong-field limit, 4M/@p»1 and a =b
leading to

Pi(y'i r) =exp(-y'). (8)

Note that P
& (y i r ) is independent of the size of the

square, both at zero and at strong magnetic fields.

The last ingredient needed in Eq. (4) is the probability
distribution P2(t, r), which for the relevant range

where 8 is the step function. Both at zero and at strong
magnetic fields, t and y are independent random vari-

ables, while in the intermediate range they are correlated
because of the dependence of a and b on r,f. To evalu-

ate this dependence we notice that the electron executes
a random walk along the direction perpendicular to the
hopping direction. The number of steps is proportional
to r;f/X and the step size is proportional to Z. The
effective area for the magnetic flux is therefore pro-
portional to rPZ'/ and hence, for weak fields, b
=KH r j3 Z'/ /@p, where K is some constant. We point
out that it is the microscopic length Z that appears in the
relevant area and not (, as suggested by NSS. '

Substituting Eqs. (4), (7) (with b =0), and (9) into
the percolation condition (3), one obtains the well-known

Mott VRH law. In the presence of a weak magnetic
field, the percolation conditions takes the form

3 ~ do d d(y )exp[ —
y /(2a )]

2p2~2g2d g ac/~0 op 4 p & p (2n)' ya

b2 1x 1+ 1+
2 4p dt(t —ar)8(t —ar)r b —

y e ' =Z„(10)
0'p

which exhibits in general a quadratic dependence of cr, (H) upon the field. Diff'erentiating Eq. (10) with respect to H
at H =0, one finds for the MC

o, (H) —o, (0)
o, (0)

where

H KXg d(2d+ 1) [op/oc(0)]I3/2 II/2

(pp2 (d+2)(2d+3) Mi/z

,(d+, )
—o, (0)z —,(0)(.)

Il/2 20'p
1/2

20'p

The sign of the MC is thus determined by the conductivity o, (0) in the absence of the magnetic field. Numerical eval-

uation of Ii/2, 13/q, and Mi/3 for d =2 shows that for o, (0)/o'p & 10 or Tp/T & 750, the MC is positive, while for

higher conductivities it is negative. Note, however, that the latter limit might not be consistent with the neglect of
winding paths.

At strong magnetic fields @M/+p»1, Pi(y i r) is given by Eq. (8) and the percolation conditions gives

3 dz

4P $y (ag) (2d+1) " i z
exp ln +'( ) =Z

0'p
(12)
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We find then that the conductivity saturates at high
fields to a value, o, (pp), which is of the same order of
magnitude as the zero-field one, o, (0). Solving Eq. (12)
numerically for a„one finds that the MC at strong fields
is positive for all values of cr, (0)/oo which are relevant
for the VRH regime and that [cr, (pp) —cr, (0)]/cr, (0) is

only a weak function of cr, (0). Our results are schemati-
cally summarized in Fig. 2. Within the percolation pic-
ture the conductivity of the sample is given by the criti-
cal conductivity o, (H). Therefore, the sign of the MC
at low fields is related to the change of the matrix ele-
ment characteristic of o, (0), by the magnetic field.
Small values of o, (0) give more weight to small matrix
elements or realizations with destructive interference
among the paths. The magnetic field will act as to im-

prove the matrix element and hence to increase the con-
ductivity. On the other hand, when a, (0) is large (con-
structive interference) the magnetic field will usually act
as to reduce it, resulting in a negative MC, i.e., it is the
magnitude of the characteristic matrix element of a, (0)
relative to the average matrix element which determines
the sign of the low-field MC. At high magnetic fields,
the probability distribution of the interference factor
(y ) weighs more than the large y, and hence leads to a
positive value for the MC regardless of the disorder.
The reason for the overestimate of the positive MC in

the logarithmic averaging procedure is its emphasis of
the bonds with very low conductivity. As discussed
above, such bonds are characteristized by a destructive
interference and hence a large positive MC. However,
these bonds play no role whatsoever in the conductance
of the sample" as they are shunted by the better conduc-
tors in the network.

In this paper, only the contribution of the forward-

going paths was included. NSS ' justified this by argu-
ing that going back even once will introduce a path mul-

tiplied by the small factor (V/IV) . Of course, in a criti-
cal evaluation of such a contribution, the number of pos-
sibilities to introduce backward steps or loops should be
taken into account as well. It would thus appear that
V/W «N", with x )0 some as yet unspecified exponent,
should be a sufficient condition for the validity of the
NSS picture (which should be certainly valid deep
enough in the VRH regime). We are currently pursuing
this issue and the role of the loops in the MC. We be-
lieve that the results presented here are more general
than the specific NSS model used.
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FIG. 2. The MC in the VRH (schematically) at weak
(dashed line) and strong (solid line) disorder vs the flux
through the area RQ X't2. Notice the quadratic dependence on
the flux for 4M «@p. Inset: [tr, (~) —cr, (0)l/a, (0) vs
ln [crp/cr, (0)].
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