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A transfer-matrix Monte Carlo technique is developed to compute the free energy of three-
dimensional, classical Heisenberg ferromagnets. From the free energy of systems with periodic and an-

tiperiodic boundary conditions, helicity moduli are calculated. From these the critical couplings for sim-

ple cubic (sc) and face-centered cubic lattices are estimated, by use of finite-size scaling. For the sc lat-
tice, the critical dimension of the surface magnetization is estimated with standard Monte Carlo
methods, yielding a result in excellent agreement with the t. -expansion work of Diehl and Niisser.

PACS numbers: 75.40.Cx, 05.70.Fh, 64.60.Fr, 75.40.Mg

Transfer matrices are widely used in numerical studies
of statistical mechanical systems in two dimensions with

discrete microscopic degrees of freedom. ' In three di-

mensions, numerical calculation of eigenvalues of trans-
fer matrices become intractable already for small sys-
tems: a 5x5x ~ Ising model in 2+1 dimensions seems
to be the current upper limit. Systems with continuous
degrees of freedom, with the exception of linear chains,
are even more of a challenge.

Here, we combine Monte Carlo (MC) and transfer-
matrix techniques to tackle a three-dimensional Heisen-

berg model and directly calculate free energies in terms
of the transfer-matrix eigenvalues for lattices up to
10x 10x ~. The method is a variant of the Green's-
function MC method, of which there have been some
preliminary applications to the three-dimensional Ising
model.

Consider a lattice in three dimensions with N sites: n,
layers of m =n„ny sites each. We chose helical boundary
conditions to obtain a single, sparse transfer matrix, and
label the sites with one index i = 1, . . . , N. Sites
1, . . . , m and N m+ 1, . . . , N f—orm the bottom and

top surfaces. For a general lattice, each nearest-neigh-
bor bond features precisely once in the list (l, i —d. ),
i =1, . . . , N, and a=1, . . . , c, up to end effects. The c
displacements d, define the lattice: c=3 with di =1,
dz =n„and di =m yields the simple cubic (sc) lattice;
for the face-centered cubic (fcc) lattice, add d4 =rn —1,
dg=m —n„, and d6=m —n, —1. At each site i there is

a spin, a three-component unit vector s;. The reduced
Hamiltonian is

N c

PS = g g si ' si —d, ~

i =l a=1

where s =s;JK for coupling constant K (s =0 for

i &0). Integration of the Boltzmann weights over all s;
with i (N —trt gives a partition function:

Z (SN m+ I)— dSN
—m e

—it'II (2)

Z + (U) = T(U
~
V)ZN(V)dV. (3)

As N ee, the dimensionless free energy (f) per site is

given in terms of the dominant eigenvalue (kp) of T by

f= —Inkp.

To implement the power method to obtain this eigen-
value, the matrix multiplication in Eq. (3) is represented
by a random process, the so-called transfer-matrix MC
method. Introduce a sequence of random walkers R,
=(S„w,), t =1, . . . , r: S, =(sI, . . . , s' ) represents a
layer configuration of statistical weight w, )0. We
maintain r within a few percent of a target r p, the
weights are kept in the range bi & w, & b„, with bi = —,

'

and b„=2. Rewrite T(S'~ S) =P(S'~ S)D(S), with a
normalization D (S) independent of S ', such that
P(S'~ S) is a probability density for a transition from S
to S'. An MC run consists of sweeps t =1, . . . , M over
all random walkers. At time t there are two steps.
Affixing primes to variables at time t + 1, we define step
(1): For t =1, . . . , r change R, to R,' =(S,', w,') accord-
ing to P(S,'

~
S,), with w,

' =D(S, )w, /c'. With Ap a run-
ning estimate of kp, choose c'=d'or/rp to maintain r close
to rp in step (2): From the R,' construct a new sequence

where SI=(s;, . . . , si). With general m-uples of spins
U = (u;, . . . , u ) and V, we define a transfer matrix T
that adds one site to the lattice:

m

T(U~ V) =exp ui g, vd Q8(u;, v; —t),
~ l=2

where the 6 functions are normalized such that
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using each walker precisely once: (a) If w,') b„, add
two random walkers (S,', —,

'
vv, ') to the new sequence; (b)

form pairs (S,', w,') and (S,', w,') with w,
' & bt and

&v,
' & bt, and add (Si,&v,

'+ w,'), where S&,
' =S,' or Si =S„'

with relative probabilities w,
'

and w„'; (c) if bt & &v,
' & b„,

or if R, is left unpaired in step (b) add R,'. The walkers
represent a vector e with components

2.0—

e(U) = g w, B(st,ut) . 6(s', u ). (4)

Denote the vector realized in sweep t by @&(U). The
crux of the method is that

1.6—

( rt e„~o„ur&), ro=(U&,
b 1

where the angle brackets denote the average over all pro-
cesses starting from the vector @,(U). An estimator' of
the dominant eigenvector 0 p of the transfer matrix is

1.2

I I I I

3 4 5 6 10

M

%'p(U, z) = g Q ci b@i(U—)~j I b 0
(6)

This is the iterate of order z in the power method, and as
such it has a bias for any r & ~; its variance increases
with r. As a compromise we chose the largest r with a
statistically significant nonzero estimate of the auto-
correlation at lag r of c&. The dominant eigenvalue of
the transfer matrix is given by Xp= Wp(i+I)/8'p(r),
where 8'p is the integral of +p(U, r) over U. As ep(U)
for N ee is the probability density of a surface
configuration U, the multiplication of Eq. (6) through by
a spin function and integration over U yields surface
correlations.

We applied the same method to systems with an-

tiperiodic boundary conditions: Each of the n, planes
had two seams related by translations by a vector be-
tween sites 0 and n„n~. One seam was in the y direction,
the other in the x direction, except for a single step in

the y direction forced by the helical boundary conditions.
Along bonds across the seam the coupling was —K, in-

stead of K.
The critical coupling K, was obtained as follows.

Denote the dimensionless free energies per site of the
periodic and antiperiodic systems by f+ and f; write
A=K, —K. For n„=n&, =n and small id' one has the
scaling relation

n (f+ f )=H(n 'A) =—H-o+Htn 'A

in d=3 dimensionss; H is the helicity scaling function,
and the correlation length diverges as 6 ", where
yT=v '. With K„Hp, and H& as parameters, we made
least-squares fits to data for several K and n values. In
most runs the target number ro was 2500. With a num-
ber of sweeps that added roughly 5000 layers, this
amounts to 12.5x 10 fiips per spin in total.

Figure 1 shows 0 vs n on an n ' scale for various K,

FIG. 1, Helicity modulus scaling function vs n' ' for vari-
ous coupling strengths K. Open symbols represent data for the
sc lattice: K =0.695 (circles), 0.6922 (inverted triangles),
0.6904 (triangles), and 0.68236 (squares); filled symbols are
fcc data: 1C =0.316 (circles) and 0.31489 (squares). For
n=10, two squares almost coincide; the fcc datum point has
the longer error bars. Solid (sc) and dashed (fcc) lines illus-
trate linear behavior near criticality for n & 5.

for both the sc and fcc lattices. To check for finite-size
effects, we systematically increased the size of the small-
est system included in the fits. The results (and standard
errors) are as follows: For the sc lattice, K, =0.6922(2)
and 0.6925(3), for sizes 5 and up and 6 and up, respec-
tively; for the fcc lattice, K, =0.3162(3), 0.3160(2), and
0.3170(5), for sizes 4 and up, 5 and up, and 6 and up. In
the fits we used yT=1.418. The K, for the sc case
agrees well with results of Ritchie and Fisher, and of
Ferer obtained from eight- and twelve-term series.
Agreement is less satisfactory with a ten-term-series esti-
mate of Ohno, Okabe, and Morita ' who find K,
=0.68236. For the fcc lattice the agreement with the
result" K, =0.3149(2) is reasonable. The values of K
around K, were not chosen optimally to estimate the
bulk thermal exponent, yet we have data for the sc lat-
tice over a sufficiently wide range of couplings to obtain
least-squares estimates: yT=1.406(55) and 1.396(78)
for sizes 5 and up and 6 and up, respectively.

The transfer-matrix method was also used to calculate
surface correlations for the Heisenberg system. Only for
small systems was a variance obtained smaller than with
a standard MC algorithm, ' and so only results of the
latter will be discussed here. We used 6nite sc lattices
with sites (x,y, z), with x, y, and z ranging from 1 to
n„=n~ =n and n, =2n, respectively, free boundaries at
z =1 and z =n„and helical or periodic boundary condi-
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tions in x and y directions. Up to boundary effects, the
Hamiltonian was that of Eq. (1). Also, couplings with

and within the surface were redefined via s,'=s;JK„
where K, =eK with enhancement factor e. We calculat-
ed the surface susceptibility

—2

summing over all sites (x,y, z) and (x',y', z) on one sur-

face; the angle brackets denote the thermal average. We
also calculated the surface correlation g„halfway across
the system:

—2V'
gn n ~x ~y xSx,y, z

' aSx+n/2, y, z +Sx,y+n/2, z

+ xs+n/2, y+ n/2z) )
~,
t

identifying sites (x,y, z) and (x',y', z), if lx —x'I =n
or ly —y'l =n W.ith 111 and g„we estimated the sur-
face critical exponent yH„which, e.g. , yields the surface
susceptibility exponent with y11=(d' —

2yH, )/yT, where
'=2.

I I I

~ ~ ~

The MC estimates were obtained from one or several
runs of 2x10 fiips per spin. To obtain a vectorizable al-
gorithm, spins were [lipped sequentially on sublattices,
such that nearest neighbors were on different sublattices.
For periodic lattices of even size this is simple: They are
bipartite. Helical systems had p sublattices L;: L; con-
sists of sites i+kp (k=0, 1, . . . ), with p the smallest in-

teger relatively prime to n and n .
The MC data (see Figs. 2 and 3) were analyzed with

finite-size scaling. The yll were fitted" with 111(n)
=Z11(ee) +An, where g =d' —

2yH, . The g„have
strong corrections to scaling and were fitted with g„= (8+C/n)n", where h =2(yH, —d'). A renormaliza-
tion-group argument suggests the origin and sign of this
correction. Simply assume that the surface fixed point'4
is characterized by a single, nearest-neighbor interaction
K,*. At bulk criticality K, will tend towards K,* under
renormalization. As the number of renormalizations re-
quired to calculate correlations grows with distance, they
will decay with an effective exponent yH, which de-
creases with distance for K, )K, and vice versa. Scal-
ing" and e-expansion' arguments suggest the naive

I I I I [
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FIG. 2. Scaling behavior of surface correlation function g, :
lnB„vs n on a inn scale for several values of the surface
enhancement e, where B„=g„exp[(4—2yn, )inn], with y&,
=0.8 from our numerical analysis. According to scaling, 8„ is
finite and nonzero for n ~. Filled and open symbols are for
cylindrical and helical boundary conditions, respectively:
a=1.0 (circles), 0.83 (squares), 0.66 (triangles), and 0.5 (in-
verted triangles). To avoid overlap, data points for cylindrical
systems are shifted upward by 0. 1 (see tick marks on the
right-hand side). Error bars are shown where they exceed the
symbol size.
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FIG. 3. Scaling behavior of surface susceptibility XI I .. 1nA„
vs n on a inn scale for several values of the surface enhance-
ment t.', where A„=[Z|1(~)—Xl|(n)]exp[(2yH, —2)inn], with

yn =0.8 and Zli(~) =11.25, 6.05, 3.65, and 2.50 for a=1.0,
0.83, 0.66, and 0.5 from our numerical analysis. For the key to
the symbols see Fig. 2. To avoid overlap, data points for cylin-
drical systems are shifted upward by 0. 1 (see tick marks on the
right-hand side). The statistical errors in the data do not
exceed the size of the symbols.
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TABLE I. Estimates of surface critical exponent yH, ob-

tained from least-squares fits to surface susceptibility and

correlation data for both helix and cylinder boundary condi-
tions. Results are labeled by n, the smallest system size includ-
ed in the various fits.

Helix Cylinder Helix
gn

Cylinder

4
5

6
7
8
9

10

0.804(11)
0.809(10)
0.792 (11)
0.793(17)
0.774(21)
0.801(36)
0.776(50)

0.778(07) 0.696(11) 0.685(12)

0.806(11) 0.753(14) 0.770(18)

0.791(24) 0.785(23) 0.784(32)

0.699(49) 0.823(36) 0.821(72)

value —
1 for the correction-to-scaling exponent.

analysis of X11 required no such correction. Estimates of
yH, were obtained from 111 and g„ for several enhance-
ments e, both for cylinders and helices. Table I summa-
rizes the results. We attribute the deviations at the top
and bottom of Table I to finite size and too small a range
of system sizes, respectively, and find yH =0.80+'0.03.
This confirms the e-expansion value yH, =0.809
+ 0.014, the series estimate' yH =0.85 ~ 0.06, a previ-

ous MC result' yH, =0.87+ 0.14, and the experimental
value '

yH, =0.83 ~ 0.06.
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