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Forced Oscillations of a Self-Oscillating Surface Reaction

M. Eiswirth and G. Ertl

Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-1000 Berlin 33, West Germany
(Received 30 November 1987)

Harmonic resonance, subharmonic and superharmonic entrainment, as well as quasiperiodic behavior
are among the effects observed if the catalytic oxidation of CO on a Pt(110) surface is carried out under
conditions of stable, self-sustained kinetic oscillations and then subjected to low-amplitude periodic

modulation of the oxygen partial pressure.

PACS numbers: 68.35.Rh, 82.65.Jv

Periodic forcing of a nonlinear, self-oscillating system
can result in a large variety of phenomena, ranging from
harmonic to chaotic response. More specifically, the sys-
tem can respond in such a way that the ratio of the fre-
quency of the resulting oscillation to that of the pertur-
bation, v,/v,, is a rational number (entrainment), or that
quasiperiodic or even chaotic behavior results. Effects of
this type have been studied extensively in various physi-
cal systems such as Josephson junctions,'™> nonlinear
electric conductors,* or hydrodynamic systems (Ray-
leigh-Bénard instability).>® As far as oscillating chemi-
cal systems are concerned, most work has been dedicated
to homogeneous reactions, both in theory’™ and in ex-
periment.'%-!3 Several previous studies with heterogene-
ous reactions suffered mainly from irregular behavior of
the nonperturbed system.!'4"!® The low-pressure oxida-
tion of carbon monoxide on a Pt(110) single-crystal sur-
face was, however, found to exhibit stable periodic oscil-
lations of the rate of CO, formation under certain condi-
tions of partial pressures and temperature’ which
renders this system a suitable candidate for a systematic
study on periodic forcing of a self-oscillating surface re-
action.

The reaction Co+ 3 O,— CO, catalyzed by platinum
proceeds through a Langmuir-Hinshelwood mechanism
by recombination of adsorbed CO and dissociatively ad-
sorbed oxygen on the surface.!® Isothermal temporal os-
cillations in the rate of CO, formation on a Pt(110) sur-
face originate from a coupling between surface reaction
steps and periodic structural transformations of the sur-
face: If the CO coverage is high enough, the 1 X2 recon-
struction of the clean Pt(110) surface is lifted, and this
transformation affects, in turn, the catalytic activity. By
proper adjustment of the parameters (pco, po, T) the
parallel development of step arrays leading to facet for-
mation?® can be suppressed so that regular autonomous
oscillations can be sustained for long periods of time un-
der constant conditions. Spatial self-organization is
mediated through the very small (< 1%) variations of
the partial pressures associated with the changing reac-
tion rate. Because of this high sensitivity to changes of
the partial pressures, periodic forcing of the system could
be achieved by low-amplitude (about 1%) modulation of

po,. Variations of the reaction rate are paralleled by
corresponding variations of the work function?®2! which
was used as a convenient probe for the dynamical
response of the system.

The experiments were performed in a standard UHV
system equipped with LEED and Auger-electron spec-
troscopy for surface characterization and operated under
isothermal, gradient-free flow conditions.?! Gases of the
highest available grade were subjected to further purifi-
cation in order to suppress surface contamination.?? The
sample (surface area about 30 mm?) was prepared from
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FIG. 1. Phase diagrams showing the type of response as a
function of amplitude and frequency of the po, perturbation.
Data were taken at the points denoted by crosses (phase lock-
ing) and circles (quasiperiodic response). (a) po,=4.15x107°
Torr, pco=2.1%x1073 Torr, T=530 K, vo=0.25 s~ !; (b)
po,=3X 10 73 Torr, pco=1.6x 10 =3 Torr, T=525 K, vo=0.1
s ~!. The numbers (1,2) refer to the periodicity of the response
(see text). During the measurement vo varied by up to 0.01
s~ L
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FIG. 2. Resonance behavior (amplitude and phase) in the
harmonic entrainment band (po,=4x107° Torr, pco=2
x1073 Torr, T=530 K, vp=0.17 s~!, forcing amplitude
1.2%).

a single-crystal rod according to standard proce-
dures.?®2' A specially designed, feedback-controlled gas
inlet system '"2? served to establish constant partial pres-
sures as well as to modulate them with frequencies up to
0.5 s 7! and relative amplitudes around 1%.

The general behavior of the system under the influence
of a periodic modulation of po, with amplitude 4 and
frequency v, (scaled relative to the natural frequency
vo) is schematically represented by the phase diagram
shown in Figs. 1(a) and 1(b). The two sets of observa-
tions were made under somewhat different conditions for
experimental reasons in order to establish clearly the
respective features. The response of the system is either
phase locked (entrained) or quasiperiodic, the bound-
aries between these two types of behavior being indicated
by straight lines. The numbers (1,2) inserted in Fig.
1(b) denote the periodicity of the forced oscillations.
The main effects observed are the following.

(1) Harmonic entrainment.—If v, is near vy, the sys-
tem oscillates with the same frequency as the perturba-
tion with a fixed phase difference (phase locking). The
system behaves similarly to a linear oscillator, i.e., exhib-
its resonancelike behavior (“chemical resonance”?3).
Figure 2 shows the variation of the phase and amplitude
with v,/vo for an otherwise fixed set of parameters. The
system response exhibits maximum amplitude (more pre-
cisely, variance) and /2 phase shift for v, =vo like a
classical forced oscillator. Since our system is un-
damped, there also exist, of course, finite amplitudes out-
side the resonance region.

(ii) Subharmonic and superharmonic entrainment.
— Outside the region of harmonic entrainment there ex-
ist other entrainment bands in which v,/v, =I//k, with
k,l =integers. If I/k <1, the entrainment is denoted as
subharmonic, and for //k > 1 it is called superharmonic.
In total, two subharmonic (%,%) and seven superhar-
monic (+,%,%,5,%,%,%) entrainment bands were
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FIG. 3. Time series and stroboscopic plot of 3 superhar-
monic entrainment (po,=4Xx 10 73 Torr, pco=2%10"3 Torr,
T=530K, vo=0.17s"1, v,=0.11s"!, 4=0.5%, 1—8.9 5).

discovered. An example of a time series for superhar-
monic entrainment (3 ) is shown in Fig. 3 together ‘with
its stroboscopic plot. The latter is constructed by plot-
ting of the signal A¢(¢) versus A¢(z+1) at intervals of
the modulation period where 7 is a suitable delay time. '°
(In principle, the value of t may be arbitrary, but in or-
der to minimize the effect of noise it was chosen in a way
that the steepest changes in the experimental signal were
circumvented.) For perfect entrainment, this plot should
consist of k discrete points which condition was best
fulfilled for low values of k and /. In the example shown
there exists some variation in the heights of correspond-
ing response amplitudes and therefore the stroboscopic
plot exhibits some spreading of the data. While k is
most conveniently derived from the stroboscopic plot, / is
simply derived from the periodicity of the time series, !
i.e., the system response consists of repeating patterns of
! different amplitudes. In the case of harmonic (1/k
= 1) and subharmonic (//k =% ) entrainment, howev-
er, there may exist alternating oscillations with high and
low amplitudes (“period doubling™).

In theory, finite widths of the entrainment bands are
expected as long as the forcing amplitude is nonvanish-
ing.7?* In the present experiments, however, small
bandwidths ( < 2% of vg) could not be resolved because
of the limited constancy of the modulation frequency and
noise (==0.1%) in the pressure-controlling gas inlet sys-
tem.

(iii) Quasiperiodic oscillations.—Under conditions
marked by the shaded regions of the phase diagram (Fig.
1) the system exhibits quasiperiodic conditions. There
no longer exists a fixed phase relation between perturba-
tion and response, but this changes continuously from
period to period. As a consequence, the stroboscopic plot
no longer consists of discrete points but of a closed curve
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FIG. 4. Stroboscopic plot of quasiperiodic oscillations near
the low-frequency 1 entrainment edge (poz=4><10'5 Torr,
pco=2x107% Torr, T=530 K, vo=0.19 s, v,=0.09 s/,
A=0.6%, 1=9s).

(Fig. 4) which the system passes once during the beat
period which is the time required for the phase difference
to return close to an initial value. The inverse of the
beat period, the beat frequency, is thus the difference be-
tween the forcing and response frequencies.

An example for a section from a time series over a
beat period near the % entrainment edge is reproduced
in Fig. 5. The response consists essentially of two peaks
for each forcing period. Initially, the second peak is
smaller but grows continuously in intensity while that of
the first peak decreases, until the situation is reversed.
After twelve forcing periods, one “extra” oscillation of
the system is gained (25 instead of 24 in the case of %
superharmonic entrainment). More precisely, after com-
pletion of such a cycle the quasiperiodic response does
not, of course, return exactly to the initial phase relation,
but the small displacements are beyond experimental
resolution.

With the example just shown the beat frequency can
be determined quite easily. If the autonomous frequency
vo were not affected by switching on the periodic modu-
lation with frequency v,, the beat frequency would in
this case simply be given by v, =vo—2v,. A systematic
series of experiments revealed that v, was always smaller
than predicted by this relation. (For example, for
vp/vo=0.45, vy/vo was 0.05 instead of 0.10.) This
demonstrates that the frequency of the system is affected
by the modulation frequency not only in the entrainment
band, but also in the adjacent region of quasiperiodic be-
havior. This effect of “frequency pulling” is analogous
to the observations made recently by Hudson, Lamba,
and Mankin'? with the Belousov-Zhabotinsky reaction.

(iv) Transient behavior.—1f the modulation was
switched on for conditions inside an entrainment band
(and far enough away from its edges) the system
responded rapidly and within a few cycles phase locking
was established. The transition from a region of entrain-
ment to conditions of unentrained behavior can be
viewed as a sort of phase transition and consequently one
might expect an increase of the relaxation time as the
system approaches an entrainment edge.?* This effect of
“critical slowing down” was recently observed experi-
mentally for the first time with a gas-phase combustion
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FIG. 5. Section of the time series corresponding to Fig. 4.

reaction.'? Experiments performed with the present sys-
tem near the $ entrainment edge qualitatively confirmed
this effect. The number of modulation periods needed
for establishing entrainment increased markedly (up to
about 50!) upon approaching the entrainment edge, al-
though quantitative analysis was not feasible.

The outlined experimental observations fit completely
into the general features of periodic perturbations of
chemical oscillators, as treated theoretically first by Kai
and Tomita’ for the Brusselator model. This is a three-
variable model, while the present system is of higher or-
der and requires at least four coupled differential equa-
tions for realistic modeling.?> A general feature of the
theoretical phase diagram for the Brusselator model is
the increasing width of the entrainment bands with in-
creasing amplitude and the occurrence of both subhar-
monic and superharmonic entrainment, separated by re-
gions of quasiperiodic behavior. At larger forcing ampli-
tudes, this model may even exhibit transition to chaos via
a sequence of period doubling. While chaotic behavior
was observed with homogeneous reactions periodically
disturbed with /arge amplitude,!"!%2 in the present in-
vestigation only small amplitudes could be applied
without leaving the narrow range of control parameters
for autonomous oscillations. Chaos originating from an
interaction of resonances was predicted for driven circle
maps?’ and has been identified in several physical sys-
tems,!">2® but for the Brusselator model, on the other
hand, no chaotic states were predicted when neighboring
entrainment bands are covered by the fundamental one.’

With the present experimental system no evidence for
chaotic behavior was obtained which could, however, if
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existent in narrow regions, have escaped detection be-
cause of limited experimental resolution or influence of
noise. We would like to mention, however, that a well-
defined transition to chaos via period doubling could be
identified for autonomous oscillations of the present sys-
tem upon variation of the control parameters.?®

In conclusion, this work describes the first well-defined
example of a heterogeneous surface reaction showing the
features developed for self-oscillating chemical reactions
under the influence of periodic perturbations.
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