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Lattice Field Theory as a Percolation Process
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For a given lattice spin or gauge theory an associated correlated band or plaquette percolation process

is constructed. It is conjectured to reproduce the universal scaling behavior of the original model.

Diff'erent field theories lead to diff'erent cluster weights generalizing a result by Fortuin and Kasteleyn

for Potts models. The new representation lends itself to the design of Monte Carlo algorithms with re-

duced critical slo~ing down.

PACS numbers: 11.15.Ha, 05.50.+q

It has been known for some time' that the q-state
Potts model is equivalent to bond percolation with a

weight factor q for each cluster and a certain bond prob-

ability fixed by the classical temperature. More recently,
Swendsen and Wang demonstrated that such a repre-
sentation allows a Monte Carlo simulation of the Ising
model at criticality with greatly reduced autocorrelation
times on large lattices. Clearly the corresponding gain in

computer-time efficiency would be highly welcome for
simulations of other lattice field theories. In fact, several

related efforts along different lines have been made. I
am thus motivated to develop a percolation representa-

Z= g +dp(o, )exp gk„„[x+s(o„o,+„)] .
Ik„„=0,11

4 x,xp

tion for continuous spin and gauge fields. Detailed nu-

merical tests in the two-dimensional O(3) a model will

be reported elsewhere.
The partition function for a spin model on a hypercu-

bic lattice,

Z =„Q,dp(a„)exp g„„s(o„cr,y„), (1)

represents O(n) a models, Ising models (n =1), x-y
models (n =2), or Potts models depending on the choice
of the integration measure dp and nearest-neighbor cou-

pling s. System (1) is augmented by a two-valued vari-
able k„„for each interaction bond:

For a given k„„configuration the spin model is now bond
diluted, and the free parameter tc plays the role of a
bond chemical potential. The annealed summation over

k„„ is, of course, trivial, and Z can again be written in

form (1) with a new nearest-neighbor action

in general cumbersome for Monte Carlo updating;
Swendsen and Wang incorporate it in their simulation by
keeping bond as well as spin variables and simulating
their joint distribution.

If we now consider continuous spins cr„(e.g. , n ~ 2)
with the standard action s(e) =P(e —1), then clearly
s(e) will be a variant action different from the original
one for tc (~. Universality, however, leads one to ex-
pect that wherever in the (P, tc) plane the model develops
long-range spin correlations one is approaching the same
continuum field theory. If the standard version of the
model with parameters (Po, tco=~) and a diluted form
at (P, tc( 00) are to describe the same long-range phys-

one will obviously have to choose P) Po. Stronger
magnetism on the active bonds has to make up for
issing ones.

e may also analyze (2) from the percolation point of
; then the spin integrations are recognized to supply
ight factor for each cluster c:

s(e) =ln[(1+e +"')/( +I'e)], (3)

where e=o„o„+„e[ —I, l], and irrelevant constants
are fixed by s(1)=O=s(l). The q-state Potts model
distinguishes only between e=l and e~l by s(e~l)

E, and (3) then sim—plifies to

(4)—rC =ln[(1+e' )/(1+e')].

Z = g exp 'tran
'
Qz, (k„„),

fz.„j I„„, c
(s)

z, (k„„)=JI Q dp(a„)exp P g k„„(o„cr„+„—1)
x6c c6zp

All spin correlations formed with (2) depend on this ics,
combination only, and Fortuin and Kasteleyn's represen- ferro
tation corresponds to the choice E=~ with E=l (1nthe m
+e'). For each bond configuration the lattice sites may W
be grouped into disconnected clusters, ~ and E=~ forces view
all spins in a cluster to be parallel. Then the spin sum- a we

mation can be carried out and results in a factor q
'

(N, = number of clusters). This innocent-looking fac-
tor is, however, a nonlocal function of [k„„] and thus

with
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For large P the fluctuations of the continuous spins now remain relevant for the bonds, because they typically arrange
1
—o„o„+„=o(1/P). Then (6) can be computed in perturbation theory after the introduction of collective coordi-

nates to eliminate the zero modes corresponding to simultaneous SO(n) rotations of all spins in a cluster. The
leading-order (Gaussian fluctuations) result of such a calculation for the O(n) o model reads

z, =(ic iP/2rr)'" "i'C (det'K, ) (7)

Here
i c i is the number of spins in cluster c, and C„=2rr"i /I (n/2) is the surface of the sphere in n dimensions. K, is

the (negative) diluted lattice Laplacian on c,
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FIG. 1. Nearest-neighbor correlation E in the two-dimen-
sional O(3) o model vs P for various fixed fractions of active
bonds. The percentages vary slightly along the curves (as indi-
cated for the end points); this is a finite-size effect on the 20~

lattice caused by the extra demon degree of freedom in the mi-
crocanonical algorithm (Ref. 9).

K, (x,y) =g„jk„„(B, —l5,i„)+k „(8„, —b„+„)l,
with x,y c c, and det'K, is the determinant of the

i c i
x

i c i matrix K, with the zero eigenvalue belonging
to the constant mode omitted. We dropped a factor of
the form A ' which only contributes to the total nor-
malization of Z because g, i c i =total number of spins.
Apart from the Gaussian determinant contribution, z,
represents the phase-space volume corresponding to the
arbitrary orientation of the cluster's total spin normal-
ized relative to the Gaussian modes. For n 1 (7)
reduces to the Ising-model result of Fortuin and
Kasteleyn, z, =2. If n ) 1 there is an analogous factor
C„(P/2x) (" ')i2 for each cluster, but clearly the remain-
ing part of the weight encodes further information on the
geometric structure of the cluster.

Figure 1 shows some first numerical results for the
O(3) o model on a two-dimensional 20x20 lattice.

Rather than fixing x, I employed the microcanonical
demon algorithm to run at various fixed percentages of
active links. The nearest-neighbor spin correlation E is
plotted as a function of P with the line "100%"corre-
sponding to the standard version of the model (x =ee).
Although E is a nonuniversal short-range quantity, I
found it valuable for adjusting p, when the bond fraction
is varied: For equal E also the magnetic susceptibility
(indicative for the correlation length) turns out to be
very similar. ' In Table I results of simulations on vari-
ous L &L lattices are reported. Parameters were adjust-
ed to approximately maintain X=O.IL2 to mimic in a
simple way the continuum limit at fixed physical volume.
For each lattice this may be achieved with various de-
grees of dilution if P is tuned appropriately. The two
choices found in the table represent the standard version
and a value of 52.5% at which autocorrelation times
turned out to be smaller than at neighboring values for
which short test runs were conducted. The quoted values
for the correlation time z» were determined by analysis
of connected correlations in computer time after reach-
ing equilibrium. Ratios of correlations at successive time
separations reached constant values at a separation —z»

and could be followed to about 3z» before getting
overwhelmed by noise. Errors on autocorrelation times
are notoriously hard to determine. Here they are some-
what subjectively based on oscillations of the ratios and
experience with multiple independent runs.

The simulation of the O(3) model is accelerated by
the performance of random, i.e., Haar-measure distribut-
ed, O(3) rotations of the independent clusters after each
heat-bath sweep of the spin and bond variables. These
collective modes leave the Boltzmann factor invariant
and represent the natural generalization of the choice of
random Potts spins for each cluster. 3 The Hoshen-
Kopelman" algorithm is used to divide spins into clus-
ters after each bond sweep. This takes less computer
time than the spin update itself. I make further use of
the nonlocal information residing in the clusters to define
improved (i.e., less noisy) estimators'2 for correlations.
Since all correlations between spins in different clusters
vanish because of their independent O(n) rotations, we

may, for example, measure the two-point function as

G(x —y) =(cr„cree(x,y;k„„)),

1462



VOLUME 60, NUMBER 15 PHYSICAL REVIEW LETTERS 11 APRIL 1988

TABLE I. Results of various simulations on lattices of size L xL. Autocorrelation times r~

associated with the susceptibility X are given in each case for bond fractions of 52.5% and 100%
(standard formulation). The first column shows the number of sweeps in multiples of 1000.

(No. sweeps)/1000

30
20
30
20
50
50
30
20

20
20
28
28
40
40
56
56

Pb [%]

100
52.5

100
52.5

100
52.5

100
52.5

1.3
5 ' 5

1.4
7.5
1.5

1 1.5
1.6

15.5

E

0.520
0.532
0.563
0.563
0.602
0.587
0.636
0.593

0.095 (2)
o. los(2)
0.094(3)
0.094(2)
0.102(3)
0.107(1)
0.109(7)
O. 123(2)

&7(2)
8 (1)

38(2)
18(3)
74(7)
3o(s)

217(12)
75 (8)

with g=l if x and y belong to the same cluster as de-

fined by the bonds fk„J, and 8=0 otherwise. In Table I
reduced autocorrelation times are noticed for the new al-

gorithm in all cases. Not unexpectedly the gain is not as
dramatic as in the critical Potts model. Combined with

the advantage of improved estimators it seems, however,
profitable to use the percolation technique in simulations
of the typical size that is manageable on present-day
computers. Many more details on the numerical aspects
will be published elsewhere.

To conclude, a word on gauge theory: Obviously the
bond variables in this case live on plaquettes which form
clusters by connecting links. The links in each cluster
may be gauge transformed independently. New moves

different from just gauge transformations arise in this

way if a site borders links belonging to different clusters;
the gauge transformation at that site may be chosen in-

dependently for each cluster and applied to the respec-
tive links. As a consequence an improved estimator for
fundamental Wilson loops may be taken to vanish ex-
actly unless the loop is fully contained in one cluster.
On the asymmetric torus appropriate for finite physical

temperature, the deconfinement transition (nonvanishing

Polyakov loop) can only take place when there is a finite

probability for links to belong to an "infinite" cluster
closing in the temporal direction, i.e., beyond a (general-
ized kind of) plaquette percolation threshold.
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