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Topological entanglements play an important role in the physical properties, such as viscosity, of ma-
cromolecular structures. We investigate the likelihood of the appearance of entanglements in the bond
percolation problem. We show that below the percolation threshold p, (but extremely close to it) there
exists an entanglement threshold p, . Between p, and p„ there exists an infinite spanning group of inter-
locked (linked) clusters. The achieved numerical resolution of p, —p, = (1.8 ~ 0.4) & 10 required
averaging over an extremely large number of configurations.
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An important problem of the statistical mechanics of
macromolecules is how to account for topological entan-
glements. ' A solution of ring polymers behaves
differently from a solution of linear polymers, since a

pair of such rings created separately is prevented from
interpenetrating by topological constraints, while a pair
of rings which have been created in an interlocked
(linked) state (catenanes ) cannot be separated without
breaking up the macromolecules. Theoretical approach
to the problem requires an addition of constraints to the
standard statistical mechanics of polymers. 3 The pres-
ence of these constraints splits phase space into mutually
inaccessible regions, and generates a purely entropic
elastic response. Topological entanglements play a
crucial role in rubber elasticity. Note that in the gel
formation process' the viscosity may become infinite
(while the shear modulus will become finite) even in the
absence of a single molecule (inftnite cluster) spanning
the entire system, since it suffices to have a spanning
group of interlocked (linked) clusters to produce that
effect. Self-entangled ring molecules and pairs of entan-
gled molecules have been extensively investigated. s Pri-

or to this work no information was available on the im-

portance of entanglements in more complicated systems,
such as branched polymers, and the treatment of the
physical properties of such structures (e.g. , elasticity9
near the gel point) completely disregarded the effects of
entanglements.

In this work we take a first step towards the under-
standing of the role played by entanglements in a stan-
dard three-dimensional percolation problem. ' Our at-
tention is focused on the geometrical/topological aspects
of the problem. We show that below the usual percola-
tion threshold p„ there exists a distinct entanglement
threshold p„which is the relevant critical point for the
problems of viscosity and entropic elasticity. While the
distance Ap„—:p, —p, is not a universal property, the
main result of this work is establishment of the fact that
it does not vanish In the consid. ered system (indepen-
dent bond percolation on a simple cubic lattice) the dis-
tance between the critical points hp„ is extreinely small,
and we had to resort to extremely large statistics (aver-
ages over millions of configurations) on small and
moderate-size lattices to resolve that quantity. While we
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argue that hp„will be small in most standard percola-
tion models, in the presence of short-range correlations
this separation may become significantly larger.

In a regular percolation problem bonds belong to the
same connectiviry cluster (c-cluster) if there is a continu-
ous path of present bonds connecting them. If the prob-
ability p for bonds to be present exceeds the threshold
value p„an infinite c-ciuster is present in the system.
We will say that two bonds belong to the same entangle-
ment cluster (e-cluster) if they either belong to the same
c-cluster, or belong to different c-clusters which cannot
be separated without violating the topological con-
straints. One should keep in mind that entanglement is a
global property, which cannot be detected by a simple in-

spection of the local environment of each bond. More-
over, one might have a situation, resembling Borrow-
mean rings, where a triplet of c-clusters is entangled,
while each pair of that triplet, viewed separately, is not
entangled. Our primary goal is finding the entanglement
threshold p„above which there exists an infinite e-
cluster. From the definitions it is clear that the p, ~ p, ;
the purpose of our work was the establishment of the
strict inequality p, & p, .

One should bear in mind a formulation of the same
question in terms of plaquette percolation": Consider a
dual of the bond percolation problem, in which we place
a plaquette in the middle of each absent bond, perpen-
dicular to it. The concentration of the plaquettes will be

q =1 —p. One can easily understand the meaning of the
threshold value q, =1 —p, by considering a large finite
system: If the bonds do not percolate in, say, the vertical
direction, one can find a collection of plaquettes forming
an orientable surface separating the system into upper
and lower parts. Thus the threshold q, signifies the ap-
pearance of infinite orientable surfaces in the system.
This surface will not, in general, be simply connected
Moreover, if p, &p„ then in the range q, & q & q,
=1 —p, all infinite surfaces will have handles. The
threshold q, will therefore signify the appearance of the
first infinite simply connected surface.

We use a finite-size scaling, or large-cell Monte Carlo
renormalization-group, ' approach to determine the
difference between the critical points: For a finite
L XL x L lattice we define a contact probability X, (p, L)
that a system percolates in, say, the z direction. This
quantity can be viewed as a probability for a bond to be
present, in a system which has been rescaled by a factor
of L. The fixed point p*(L) of such renormalization-
group transformation is determined from the equation
X,(p*,L) =p*, and provides an estimate of p, . [The
trivial (stable) fixed points, p* =0 and p* =1, are ex-
cluded from the discussion. ] For L ee we expect that

p (L) p, . Similarly, we can define a probability
X,(p,L) that the system is entangled (i.e., either per-
colates or cannot be separated into two parts without
violating the constraints) in the z direction, and use this

function to obtain an estimate p,*(L) of the entangle-
ment threshold p, . One can easily see that the expected
distance between the estimates of the critical points

hp,*,=p* —p,* is extremely small: The smallest possible
entangled configuration on a cubic lattice consists of two
interpenetrating (but not touching) loops of sizes 2X2
each. This minimal configuration consists of sixteen
bonds, and its probability for p = —,

' will be smaller than
p'6=10 ' . Thus for L ~ 2 entangled configurations
are impossible, while for L =10 we expect to have very
small Ap,*,. (The numerical simulations indeed show
that Ap,*,=10 -10 in the relevant range of L's. )
However, we may take advantage of the fact that X, and
X, almost coincide: In the vicinity of p* both curves can
be treated as straight lines, as depicted in Fig. 1. To first
order in p —p* these lines are parallel, with slope
a(L)=[8X,/Bp]~ ~.. Thus, instead of measuring the
horizontal distance Ap,*, between the lines, we can mea-
sure the vertical distance hX=X, (p,L) X,(p—,L).
From Fig. 1, one can see that Ap„=~/(a —1). Since
a = 10 in the relevant range, the quantity ~ is larger
than dp,*, by an order of magnitude, and, therefore, more
easily measurable. ~ is just the probability of finding a
nonpercolating, yet entangled, realization for given L
and p.

We considered lattices with L =4, 6, 12, and 18. On
those lattices we examined 192.3, 40.3, 6.3, and 2.7 mil
lions of configurations, respectively. The total simula-
tion consumed 119 d of CPU time on an Apollo Model
DN 3000 minicomputer. '3 Since the program demanded
relatively small memory, but required enormous execu-
tion times, the large redundancy of the data structure
has been used to accelerate the calculation. Simulations
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FIG. 1. Qualitative plot of the entanglement probability &,
(dashed line) and the percolation probability X, (solid line) as
functions of p, in the vicinity of p*. Fixed points are deter-
mined from the intersection of those lines with the solid line
X=p. Only part of the graphs in the vicinity of p is shown.
Typical scale for L =10 is shown. Notice that in this case AX
is larger than Ap,*, by an order of magnitude.
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were performed at p (L). ' All nonpercolating realiza-
tions have been examined for entanglements: Initially all
loops were identified and recorded with an algorithm
resembling the burning method, ' which systematically
searches structures, and identifies branching points and
the points at which these loops are closed. Pairs of loops
belonging to different clusters were then examined for
entanglements. One should keep in mind that AX is ex-
tremely small in the considered range of L's, and there-
fore, it sufficed to examine only "direct" entanglements
between the loops belonging to the cluster attached to
the upper boundary of the lattice and the loops belonging
to the cluster attached to the lower boundary —the prob-
ability of entanglement via an intermediate cluster is

completely negligible. The presence of a topological link

between two loops I 1 and 12 was established by the calcu-
lation of the Gaussian invariant, '

[ (drixdri) (r1 —r2)
4~(l)/ lg ~r r

~

3

If the (integer) result of this double integration does not
vanish, the loops are linked. 212 does not discriminate
well between different kinds of links. In particular, there
exist entangled (linked) configurations for which X12
vanishes. ' Thus, in principle, this method of calculation
would only establish a lower bound on ~. However,
even the simplest entangled configurations with vanish-

ing 212 contain so many bonds that in the considered
range of L's their probabilities are negligible (and many
orders of magnitude below the accuracy of our calcula-
tion). Thus, within the accuracy of our results, we ob-
tain the actual value of hX, rather than its lower bound.

Evaluation of /~2 does not involve a calculation of
continuous line integrals, since it can be reduced to inter-
section counting on the projections of the loops on an ar-
bitrary plane. ' Nevertheless, the number of operations
required to evaluate the expression is proportional to the
product of the lengths of the loops. Figure 2 depicts an
entangled nonpercolating configuration on L =6 lattice
found by our program. For clarity, all small loops and
irrelevant dangling bonds have been removed. Such
"shaving" of the configuration is actually performed by
the program itself in order to minimize the number of
Gaussian invariants which must be calculated. Among
the millions of examined configurations for each L only= 10 entangled nonpercolating configurations were
found. Thus, the accuracy of our estimates of ~ and

Ap„ is only about 30%. Figure 3 depicts the sequence of
estimates hp„(L) as a function of 1/L. The estimated
asymptotic value is Ap« = (1.8 ~ 0.4) x 10 7. While the
distance between the critical points is very small, there is
not much doubt that it is finite.

The accuracy of the measurement can be increased by
use of larger cells. We expect that for very large lattices
the time consumed for complete analysis of a single
configuration will increase as L . However, in our mea-
surements it increased approximately as L because of
numerous simplifications resulting from the use of small
L. The rapid increase in time is partially compensated
by an increase in ~ (because of an increase of the slope
a). Thus the time needed to find an entangled configura-
tion increased very slowly. For L =18 we needed 87 h

CPU to find a single entangled configuration. From our
data we estimate that for L = 300 most of nonpercolat-
ing configurations at p will be entangled. However, one
should keep in mind that for such large cells one will

need more elaborate methods of link detection, and en-
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FIG. 2. Typical entangled nonpercolating configuration for
L =6. The spheres represent the lattice sites, and the cylinders
represent the relevant bonds. The z axis has been chosen as the
direction of percolation/entanglement. The boundary condi-
tions used in the simulation are evident in the filling of the top
and bottom planes with bonds. All small loops and dangling
bonds (without large loops) have been removed for clarity.

I/L
FIG. 3. Successive distances between the fixed points Ap,*,

as a function of inverse cell size 1/L Error bars are the es-.
timated standard deviations due to the finite number of realiza-
tions. The extrapolation of the graph to 1/L =0 (as indicated

by the horizontal bar) gives the distance between the percola-
tion and entanglement thresholds.
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tanglements between a pair of e-clusters "mediated" by
an additional cluster will also play an important role.

Geometrical characteristics of the detected e-clusters
differ from those of c-clusters. ' However, such an ex-
treme closeness of two critical points prevents investiga-
tion of the critical properties of e-clusters near p =p, for
such small cells. The nonlocal nature of the entangle-
ment constraint, and the possibility of entanglements
consisting of more than a single pair of loops, lead to the
expectation that the critical properties at p, will be
different from those of the c-clusters at p, . The discrete
nature of lattice percolation requires the presence of
rather large loops (i.e., being close enough to p, ) before
entanglements become physically possible. In lattices
with large coordination numbers (e.g. , the simple-cubic
lattice with nearest-neighbor and next-nearest-neighbor
connections) one may have rather small entangled loops;
however, the increase in the coordination number de-
creases the p, and it does not seem to be possible to
separate the critical points further. One might consider
further investigation of the critical properties near p, us-

ing percolating systems with short-range correlations.
It is interesting to observe that the presented problem

is specifically three dimensional it —has no two-

dimensional analog. In more dimensions linear loops
cannot be linked. One can, however, imagine entangle-
ments among objects of higher topological dimension
(e.g. , pairs of surfaces, or surfaces with lines). It is un-

clear whether such objects appear in more-dimensional
percolation problems, and what the proper generalization
of this problem is to an arbitrary dimensionality.
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