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We propose and test a new molecular-dynamics method to study fragmentation of condensed matter
under homogeneous adiabatic expansion. Our atomistic simulations give significant insight into the na-
ture of fragment distributions. We also find that a simple continuum model based on energy balance
gives a reasonably good estimate of the average fragment mass.
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The random segmentation of a one-dimensional (1D)
infinite line provides an example of a geometrical statisti-
cal theory! whose fragment distribution is in reasonable
accord with the results of 1D dynamic fragmentation ex-
periments. Unfortunately, in more dimensions, numer-
ous geometric constructions are possible, leading to wide-
ly differing distributions. Furthermore, because of in-
herent test complexity,' laboratory fragmentation exper-
iments are not able to differentiate unambiguously
among the various competing geometric statistical
theories. We report the results of novel molecular-
dynamics (MD) computer experiments on fragmenta-
tion, which do not suffer from the practical limitations of
laboratory testing and which allow us to select the micro-
scopically correct statistical theory. In these MD simu-
lations, condensed matter undergoes adiabatic expansion
and fragmentation. Our new MD technique invokes the
classical, Euclidian-space picture of the “big bang,”
where our infinite sample (Universe) is modeled as an
expanding checkerboard of periodically repeated units,
each containing N atoms. Not only is this method new
and interesting for its own sake, but through its use, we
have been able to establish that the homogeneous distri-
bution of fragment or cluster masses is exponential, and
that the average cluster mass can be simply explained by
an energy balance between the kinetic energy of expan-
sion and the potential energy of broken surface bonds.
The implications of these results are far reaching, insofar
as they lend physical, albeit microscopic, credence to
fragmentation models developed for a wide range of ap-
plications, from the breakup of oil shale, to the destruc-
tion of armor, and even to the distribution of galaxies in
our Universe.

We first describe the MD calculations, which are
meant to simulate the homogeneous expansion of an
infinite system. The effects of surfaces at free bound-
aries are minimized by the imposition of periodic bound-
ary conditions. Within each of the periodic units there
are IV particles whose initial coordinates and momenta

correspond to a specified equilibrium state of a fluid (or
solid). At time zero, the side lengths of the periodic unit
are made to expand at a constant (isotropic) rate: for ex-
ample, in the x direction, L,(t) =L,(0)(1+7¢). This
feature (other than the sign of the boundary velocity) is
very much like the method for the generation of shock
wavesZ; however, at time zero, unlike the inhomogeneous
shock-wave case, a constant (homogeneous) velocity gra-
dient is applied to all the particles within the unit. Con-
sequently, the x velocity of particle i (coordinate x;), for
example, becomes u;(0+) =u;(0) +17x;(0), where 7 is
the initial expansion strain rate (Hubble constant in
cosmological terms) and u;(0) is the initial random
thermal velocity. From time zero onward, the expansion
is adiabatic (no more energy is added to the system), and
the particles obey Newton’s equations of motion, with
expanding periodic boundary conditions—that is, if an
atom with coordinate x; and velocity u; leaves, for exam-
ple, the left-hand boundary of the periodic cell, it is re-
placed by an image particle that enters the right-hand
boundary with x* =x;+L, and u* =u; +L,.

For our atomistic simulations of expansion and frag-
mentation, we chose to study a 2D fluid in order to ob-
tain a statistically significant number of fragments. For
the interatomic forces, we chose the Lennard-Jones pair
potential (inverse-twelfth-power repulsion and inverse-
sixth-power attraction) as a realistic model potential
having an attractive well. In contrast, a purely repulsive
potential lacks a cohesive mechanism for clustering and
therefore its phase diagram lacks a liquid-vapor coex-
istence dome. Moreover, the properties of the two-
dimensional Lennard-Jones system are well known; for
example, its phase diagram has been determined’ (see
Fig. 1). The Lennard-Jones units are the atomic mass
m, the distance o at the crossing point of the pair poten-
tial, and the well-depth energy ¢; the unit of time is
therefore t1o=o(m/e)"/%. The interaction range of the
attractive well is smoothly truncated? at =1.74c by the
fitting of a cubic spline at the inflection point, =1.24¢
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FIG. 1. Phase diagram for 2D Lennard-Jones system (Ref.
3). Arrows show MD expansion path. (Dashed curve is spino-
dal line.)

(the minimum of the potential is at 2"/65). We studied
five subsonic expansion rates ranging in powers of two
from 729=0.0535 to 0.856; for subsonic expansion, 7
must be small compared to the vibrational frequency
(72"2t5"! in the solid). The initial state was an equilib-
rium fluid at a density po?/m =0.75, approximately that
of the triple point, and a temperature kT/e =0.6, slightly
higher than that of the critical point. The five experi-
ments were terminated at a final density po?/m =0.175.

There are two previous studies of the 2D Lennard-
Jones system that are particularly interesting in their re-
lationship to the present work. Abraham, Koch, and
Desai studied isochoric quenching into the metastable re-
gion of the vapor dome (spinodal decomposition).* The
principal feature of their MD simulations is the phase
separation at constant temperature and density, rather
than the process of fragmentation in an expanding fluid.
Blink and Hoover studied the sudden heating, expansion,
and fragmentation of a large 2D droplet with free
boundaries.® Our approach differs in its emphasis upon
homogeneous expansion in the bulk fluid, without free
boundaries, thereby facilitating comparisons with contin-
uum theories of dynamic fragmentation.

In our MD experiments, the expanding fluid follows
(approximately) an isentrope, shown as a track resem-
bling a van der Walls loop in Fig. 1. We have computed
the bulk temperature along this path from velocity fluc-
tuations of particles about their local expansion velocity,
assuming local thermodynamic equilibrium—a question-
able assumption, as we point out later. Fragmentation of
the bulk liquid begins somewhere near the spinodal line,
where incipient cavities form due to thermal fluctuations,
as seen in Fig. 2. The termination of the expansion ex-
periment is shown in Fig. 3. This is clearly a snapshot of
a nonequilibrium state, since many of the droplets are
far from spherical; also, according to the kinetic temper-
ature, only 20% of the mass should be in the condensed
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FIG. 2. Snapshot of particle positions early in 2D MD ex-
pansion (po?m =0.612, kT/e=0.37; N =4200, 7to=0.21,
t/to=1).

(nonvapor) phase at equilibrium.

We have gathered cluster statistics from MD experi-
ments at this final state for the five strain rates. The
identification of clusters is done as follows: (1) Initially,
each atom is considered a monomeric cluster, whose
cluster number is equal to its atom number. (2) Proceed-
ing one at a time through the list of N atoms, we make a
list for each atom of its neighbors that fall within a
chosen cluster bond length r. (=1.240), the basis for
our definition of a cluster. (3) For each neighbor, we
determine the larger of the two cluster numbers (the
atom and its neighbor), and replace any previous oc-
currence in the list of clusters by the smaller number. At
the end, all possible connectivities are thus accounted

‘ |
100

FIG. 3. Snapshot of final particle positions for 2D MD ex-
pansion experiment (po?/m=0.175, kT/e==0.39; N =4200,
fto=0.21, t/to=10).
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FIG. 4. Cluster statistics for the final state of 2D MD ex-
pansion (N =4200) at initial rate 7jz0=0.21: logarithm of cu-
mulative number of fragments of mass M or greater (dots) vs
M, along with fitted bimodal [Zexp(—M/u)] distribution
(solid curve).

for. The number of atoms in each cluster is counted and
the distribution of clusters is computed.

A representative fragment distribution from an MD
expansion experiment is shown for the expansion rate
1to=0.21 in Fig. 4, where the logarithm of the cumula-
tive number of clusters (fragments) of mass M or greater
is plotted against M, in units of the atomic mass m.
(The cumulative number of clusters, rather than the
number itself, is reported because it is inherently less
noisy, especially for large masses.) The cumulative dis-
tribution is well represented by a sum of two
exponentials—a bimodal distribution; in Fig. 4, the two
modes are a monomeric peak (u=1) and a broad shoul-
der with average fragment mass u =20.6.

An exponential fragment distribution can be derived,
under the assumption of equally likely cluster masses, by
our maximizing the number of ways that fragments can
be distributed No!/(n!nsy!. . .nn!), where ng is the num-
ber of clusters containing k atoms, subject to the con-
straints of fixed total number of atoms N and number of
fragments No. The derivation parallels that of maximiz-
ing the entropy to obtain the canonical Boltzmann distri-
bution.! As an example of such a distribution from mac-
roscopic experiments, Fig. 5 shows the results of explod-
ing munitions tests of Mock and Holt, where fragments
were collected after detonating explosive-filled steel
cylinders.® On an even larger scale, Fig. 6 shows the
analysis by Brown, Karpp, and Grady of the fragmenta-
tion of the Universe by the real big bang, giving the dis-
tribution of galaxies as a function of absolute luminosity,
considered to be proportional to galactic mass.’

Thus, from the atomistic to the galactic scale, homo-
geneous fragment distributions appear to be consistently
exponential with fragment mass, rather than, as has been
suggested by Mott and Linfoot, exponential with frag-
ment diameter® (or square root of mass in 2D). As
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FIG. 5. Cumulative fragment number vs fragment mass for
explosive fragmentation of a steel cylinder (Ref. 6).

pointed out by Grady and Kipp,' other geometric con-
structions are possible, such as the Voronoi fragmenta-
tion® (which leads to a distribution that looks qualita-
tively like a Gaussian in fragment mass). However, the
physical processes of fragmentation, which occur in our
MD calculations, rule out these competing geometric-
based theories.

It remains, then, to predict the mean or median frag-
ment mass as a function of the initial density (perhaps
temperature, too) and expansion rate, in terms of the
fundamental properties of the interaction forces between
atoms. Grady has proposed a simple equilibrium model,
based on the balance of the kinetic energy of expansion
of a spherical droplet and the potential energy required
to form its surface.'® The expansion kinetic energy per
unit mass is [d/(d+2)1R2%3%/2, where R is the radius of
the d-dimensional droplet. The surface potential energy
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FIG. 6. Fragmentation of the Universe (Ref. 7): cumula-
tive number of galaxies of mass M or greater, where M is as-

sumed to be proportional to absolute luminosity (units: solar
luminosity x 10'9).
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FIG. 7. Average fragment mass vs 2D MD expansion strain
rate, rjito; N =4200. Both arithmetic mean and median cluster
size are shown, the latter for two cluster bond-length
definitions: lower end, r./oc=1.24; upper end, r./c=1.33.
Energy-balance theory (solid curve) and fit to mean cluster
size (dashed curve) have slope — % .

per unit mass is d(r./R)(En/2), where Ep is the
cohesive energy (per unit mass) and r, is the thickness of
the shell of broken bonds. Minimization of the sum of
these energy densities for the minimum surface density
of a droplet gives the mean cluster mass:

_Sa [@+2rEen |
M d 2772 ’

where S;=2792/T(d/2) is the area of a unit d-
dimensional sphere. This continuum-theory expression
can be evaluated for discrete, atomistic systems in terms
of the pair potential: Econ=nge/2m, where ng is the
number of nearest neighbors (2, 6, and 12 for d =1, 2,
and 3, respectively), and r.=o, the range of the pair
potential. For our 2D system, the mass (number of
atoms) in the mean cluster is therefore u=(0.75)6%3x
x (1jtg) ~*3, which is shown in Fig. 7 along with the MD
results for five different strain rates. In this figure, both
the mean cluster mass, as determined from the slope of
the broad shoulder in the log-linear plots of cumulative
number versus mass (that is, excluding the monomeric
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peak), and the median cluster mass (half the mass of the
sample is in clusters bigger than the median) are shown.
For a single exponential distribution, the median is 1.68
times the mean; for a bimodal distribution, the ratio is
somewhat less. Nevertheless, this does not account for
the factor of 3 by which the energy-balance theory
overestimates the average cluster mass. Part of the
difficulty is the fractal nature of the connectivity of clus-
ters, as shown in Fig. 3; by a change of the cluster bond
length from 1.240 to 1.330, the median cluster mass in-
creases as much as 50%. Another way of understanding
this from the energetic point of view is that for the same
surface area (energy), a worm-shaped cluster contains
fewer atoms than a spherical cluster. As higher strain
rates are achieved, the clusters become smaller and more
spherical, and hence in better agreement with the simple
model.

In conclusion, we have demonstrated, through the nov-
el use of molecular dynamics, the ability to simulate
realistically the fragmentation of a fluid (or solid) under
homogeneous adiabatic expansion. We find that the dis-
tribution of fragment masses is exponential, in accord
with information theory (maximum entropy). Moreover,
a simple energy-balance theory gives a reasonably good
estimate of the average fragment mass.
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