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Localization in one dimension in the presence of a pseudorandom potential is investigated. The locali-
zation length of the tight-binding model V,un+tn+1+un—1 =Eu, with V, =Acosza|n|’ is calculated
numerically and in perturbation theory for A <1, for generic values of a and v. The similarity between
the potential ¥, and random potentials increases with v. It is found that for v= 2 all the states are lo-
calized and the localization length is equal to that of the corresponding random model while for
0 <v=1 there are extended states. The intermediate regime 1 < v <2 is discussed as well.

PACS numbers: 71.50.+t, 03.65.Bz, 71.55.Jv

It is well known that in one dimension, in the presence
of a random potential, all the states are localized.!?
This localization is a quantum mechanical phenomenon
and takes place for arbitrarily weak random potentials, if
the hopping is of a sufficiently short range. In this Letter
localization in the presence of pseudorandom potentials
will be studied. These are well-defined potentials that
exhibit some properties of random ones. Such properties
are, in particular, ergodicity and the absence of correla-
tions between the potential at various sites. Ergodicity
does not imply localization as is well known from the
studies of Harper’s equation with an incommensurate po-
tential.>* We will see that the correlations between the
values of the potential at various sites determine its lo-
calization properties.

Pseudorandom potentials were encountered in the
analysis of the quantal behavior of the kicked rotor, >%
which is the simplest driven quantum mechanical system
that is chaotic in the classical limit.”® Therefore it is
representative of a family of problems of experimental
relevance, such as molecular® and atomic'® beam experi-
ments as well as the behavior of mesoscopic systems. !
Superlattices with various periods can be fabricated and
their electronic localization properties are expected to be
related to those of random systems. !2

In what follows we will study the nearest-neighbor
tight-binding model

V,,u,,+u,,+1+u,,—;-Eu,,, (1)

where u, is the amplitude of the wave function on the
nth site of a one-dimensional chain, ¥, is the diagonal
potential, and E is the energy. It will be assumed that
the diagonal potential is

Vi =ACOSPp, )
with
¢n=nal|nl". (3)

For v=1 it is just Harper’s equation. It represents the
crystalline solid if « is rational, and an incommensurate
potential if it is irrational.* Therefore, for v=1 and a

irrational, the states are extended for A <2 and localized
for A > 2, as was found by Aubry and Andre,* Sokoloff,*
and Simon.* If {¢,} is truly random, then (1) is the
one-dimensional Anderson model for localization where
all the states are localized.? It was shown that a model
like (1) where ¥, is replaced by ¥V, =tan(zan’—w) (
is a phase) and E =0 corresponds to a kicked rotor.® It
was argued that {V,} is effectively random leading to
Anderson localization, and the argument was verified by
numerical calculations.>® One may suspect that for this
model the localization results from the fact that the
tangent is unbounded rather than from typical interfer-
ence effects.!® In particular, it will be shown that for the
model (1)-(3) with v=2 all the states are localized.
This result supports the assumption that Anderson local-
ization takes place for the kicked rotor as well. It is
reasonable to expect that for an irrational a the pseu-
dorandomness of the sequence {¥,} will increase with v.
The reason is that the rate of growth of ¢, with n in-
creases with v (for v>1). The potentials ¥, depend
only on ¢, mod2r, that are small fractions of large num-
bers with rapidly growing differences among them. In
what follows these arguments will be stated in more
quantitative terms. Consequently, for the model that is
defined by (1)-(3), the degree of pseudorandomness is
controlled by the parameter v. This model will be ana-
lyzed for irrational a in the regime A <1 in the frame-
work of perturbation theory'#!> in A. Some subtleties
encountered in random systems'® may be found also in
our model, but such refined questions will not be ad-
dressed in this work. Since the diagonal potential tends
to localize the states, it is reasonable that if states are lo-
calized for small A, localization persists for larger values
of A as well. The full “phase diagram” in the (,v)
space will be published elsewhere. !’

To the second order in the strength of the diagonal po-
tential the localization length & satisfies

A2 1
y= lim —

Swl?, 4
W Ssinze v SV @
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where y=1/& and Sy = + (SN + S~ ) with

4 _ S tig,+2ine

SN nz_:oe i )
The energy of the unperturbed problem, that is defined
by (1) with A =0, is E=2cosf. The approximation (4)
should hold for a weak potential and for energies that
are sufficiently far from the band edges 6 =0 and 6=r.
It can be derived following the derivation that was used
by Thouless for the Schridinger equation in the
differential form. The only difference is that the unper-
turbed Green’s function is G = Liexp(i|n—r|6)/siné,
rather than (11) of Ref. 14. The equation corresponding
to (4) was derived by Thouless'*! for a random poten-
tial V,, but randomness is not required for the deriva-
tion. For large N, the randomness of {v,} implies
|Sn|2~N and consequently the localization length is
finite. For the potential ¥, of (2) with v=1 and « irra-
tional, S is bounded and consequently y vanishes and
the states are extended in agreement with well-known re-
sults.>* Within the leading order in perturbation theory,
Eq. (4) implies that the “random walk” property of Sy,
namely | Sy | 2~N, for large N implies exponential lo-
calization. This is a property of random potentials but it
may be shared by a much wider class of pseudorandom
potentials.

The asymptotic behavior of Sy (and Sy*) for v=2
and irrational ¢ was analyzed in detail by Hardy and
Littlewood.'®!® They proved that Sy ~+/N for large N,
namely

Sy =0(/N) [ I\IIi_rpmSN/\/N =const ]

For integer values of v> 2 a result that is mathematical-
ly weaker but is similar for our purposes, namely Sy
=0(N'2*€), with ¢ arbitarily small, was established

[ lim SyN "2~ €= ]
N—

Since the pseudorandomness of the terms in the sum Sy
increases with v, it is reasonable to assume that
Sn~+/N for all v=2 (for generic v and a). Moreover,
if the phases [p, +2n0lmod2z can be considered ran-
dom, one finds

|Sn|2=% S\ =5 N+o(N). 6)

In order to estimate S5 (or Sy ) for 1 <v <2 it can be
rewritten with the help of the Poisson summation formu-

N N
C, = lim L Y cos(pn+r—0n)+ EOCOS(¢n+r+¢n) :
=

N—’°°2N n=0

la in the form

oo N
SN= X f dnexpliran’ —2izmn+2in6).  (7)
m=—o0
Since we are interested in the large-N behavior, the in-
tegrals can be estimated by the method of stationary
phase. The resulting estimate is

M
SN =A4 Y mPexplina'm”], (8)
m=0

with v'=v/(v—1) and B=Q-—v)/(v—1), while
a'=aB"—2B"""V and M=N'"'/B with B=2/
av. The proportionality constant is A=B[av(v
—1)172(1+i). Since we are interested in the asymp-
totic behavior of the sum, 6 was neglected relative to m
in (8). Note that v' > 2 for 1 < v < 2; therefore, follow-
ing our assumptions, the phase of the exponential of (8)
can be considered random if a' is a generic irrational
number. Therefore, to the leading order in N it is found
that

i N
|SnIP=% |SN+Sv P=3 AP X mP==- (9)
m=0 2
Therefore for v> 1, for nearly all values of a the asymp-
totic form (6) holds. For 0 < v < 1, following the deriva-
tion of (8) one can show that the sums S& are bounded,
away from the band edges =0 and 6 =r. We conclude
that in the framework of the second-order perturbation
theory,

y=1A1Ysin29=7% for v> 1,
(10)
y=0 for0<v=<1.

The states are localized for v>1 and extended for
0<v=1. The value of y for v>1 is identical to the
one that is found if ¢, is random and uniformly distri-
buted in the interval [0,27x].

We turn now to characterize the potential ¥, in terms
of its pair correlations. For this purpose (4) is rewritten
in the form

. A2 NN
=] Co+22.C; 2ro |, an
4 Ngnw 8sinZ0 b rgl coser ]
where
1 N—r
CN=—=3 cOs¢n+,COSPy. (12)
Nn-O

In the limit N— oo, the C/ approach the pair correla-
tion function

(13)

The terms in this equation are averages over sequences of N terms. If the phase of the cosine is ergodic these averages
can be replaced by the average of the cosine with respect to its phase. For v> 0 the second term is always ergodic and
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FIG. 1. The numerical value of the inverse localization

length yn as function of the number of iterations V for A =0.1,
ra=3.5, E=0, and (curve a) v=2.0, Nmax=107; (curve b)
ve=1.4, Nmax=10% (curve ¢) v=0.9, Npax=10". 7 is the
theoretical value (10).

therefore its contribution vanishes. The first term is er-
godic for v> 1 while for v <1 its phase tends to zero,
namely

limm [¢n+,r—0n] =0.

Therefore the pair correlation function is C, = ¥ 8o, for
v>1 and C,=1 for v<1, while C,=1% coswar for
v=1. Substitution in (11) leads to the result (10). For
v <1 this result is found with the help of the Poisson
summation formula. For v <1 it holds except for an en-
ergy for which 20 =ra. This calculation of the localiza-
tion length which required the interchange of the order
of summation is allowed only if the sums are absolutely
convergent. The results agree, however, with those ob-
tained by direct estimation of the sums (6)-(9).

In order to test the analytic predictions of the pertur-
bative calculation, the localization length was calculated
numerically. For this purpose z, =u,+1/u, were found
iteratively from (1) with some arbitrary initial conditions
uo and u;. The approximation of the inverse localization
length is

| &
)’N’anllrﬂznl.

The typical dependence of yy on N is depicted in Fig. 1.
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FIG. 2. The inverse localization length y as a function of v
for (a) E=0, A=0.1 (triangles) and A =0.4 (squares); as well
as for (b) A=0.4, E =0.4 (squares) and E =0.88 (triangles).
The dashed lines show the value of y/7 for the corresponding
model where {¢a} of (2) is random.
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The number of iterations Npax in each calculation is
such that yn converges to a constant that approximates
the inverse localization length y. The line a is typical for
v>1.7 and E=0 where y converges rapidly to finite
values, while ¢ is typical for v<1 where rapid conver-
gence to zero takes place. For 1 <v=<1.7, y seems to
approach a finite value extremely slowly as demonstrated
by b where Nmax =108 We cannot rule out from our nu-
merical results the possibility that y vanishes for these
values of v. The dependence of y on v is presented in
Fig. 2. It is demonstrated that for v> 1.7 and E =0 the
value of y/7 is in good agreement with the analytical re-
sult of (10), namely y/7=1. It is also in agreement with
the values that are found for the corresponding model,
where {¢,} is random. For v <1 it is found that y=0 in
agreement with perturbation theory. In the intermediate
regime 1 <v=< 1.7, the numerical results disagree with
the prediction of perturbation theory (10). For E=0 the
behavior is qualitatively similar to the one that is found
for E=0. But the behavior is similar to that of a ran-
dom system for v> 1.3 (rather than v> 1.7 for E =0).%°

For v=<1, correlations of long range are present and
the states are extended. For v= 2, the pair correlations,
as well as correlations of higher order, are short ranged
and all the states are localized with a localization length
that is equal to that of the corresponding random model.
For a weak diagonal potential it can be calculated from a
perturbation expansion that is similar to the one that is
applicable to random systems. In both regimes, v<1
and v=2, the numerical results are in agreement with
those that are obtained from perturbation theory. In the
intermediate regime there is a clear disagreement be-
tween the numerical and the perturbative results. In this
regime the pair correlations are short ranged, but
fourth-order correlations of long range are present. !’

For 1 < v <2 there is a clear discrepancy between Eq.
(10) and the numerical results, in particular for E=0.
It is possible that the perturbative calculation fails be-
cause terms of order A* are affected by the fourth-order
correlations, that are of long range for v<2. This
disagreement may result also from the fact that Sy, and
consequently y, are dominated by sparse, narrow regions
[see Eq. (8)] with separations, that exceed the localiza-
tion length. It is possible that accumulation of errors in
the numerical calculations, when it is combined with this
sparsity, makes them inaccurate.?’ Further investigation
of these problems is required.

We believe that the localization properties that are re-
ported in this Letter are quite general for models of the
form (1), and are relevant also for potentials that are not
of the specific form (2) and (3).
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