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Electron-Beam Radiation in a Strongly Turbulent Plasma
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(Received 21 September 1987)

A solution for the radiation power and frequency spectrum of a relativistic electron beam passing
through a strongly turbulent plasma is presented. Regions of intense, localized electrostatic fields in the
plasma are characterized as dipolar "solitons. " A new regime of the beam-plasma interaction is

identified with the range of beam parameters for which radiation from the beam dominates over the
plasma radiation.

PACS numbers: 52.25.Sw, 52.35.Ra, 52.35.Sb, 52.40.Mj

Radiation generated by electron-beam discharges in

plasmas appears to derive from conversion of nonlinear
plasma-wave turbulence into electromagnetic waves, and

generally occurs in narrow frequency bands at the plas-
ma frequency and its second harmonic. This process
occurs on a grand scale on the sun and other astrophysi-
cal objects, ' and has been studied in the laboratory in

plasma physics experiments, and as a radiation source. '
The radiation produced by the acceleration of beam

electrons is overlooked, mainly because it is regarded as
incoherent, and is intrinsically small in low-density
beams. Nonetheless, the radiation can provide useful in-

formation about the structure of the turbulence, and, in

the case of dense relativistic beams, can become substan-
tial relative to the plasma radiation. In this Letter, the
beam radiation is calculated from a nonlinear turbulent
state also assumed in models for the plasma radiation.
The beam radiation is unique in being forward beamed
(in the relativistic ease) and having frequency com-
ponents higher than the plasma frequency. Some coher-
ence derives from the small-scale structure in the tur-
bulence. Higher frequencies are produced when the
beam is bunched.

Large amounts of beam radiation would seem possible
when the electrostatic Langmuir wave produced in the
beam-plasma instability acts as a "wiggler" field on the
beam. However, stimulated emission by the beam has
been found to have a small growth rate and inconsistent
spectral features. 4 Also, any coherence in beam-gener-
ated waves is likely to be rapidly detuned by the tenden-

cy of large-amplitude electrostatic waves to clump (or
collapse) into increasingly localized wave packets. Such
a plasma is said to be strongly turbulent.

The localized electrostatic structures in the strongly
turbulent state are characterized as "solitons" or "cavi-
tons. " Caviton formation occurs through the expulsion
of ions from local regions of high field into regions of less
field by quasineutral coupling to electrons feeling the
ponderomotive force. During this process, ions absorb
the momentum of the beam-generated plasma waves,

and, except for a residual velocity which is not greater
than the ion-sound speed, the caviton is at rest in the

plasma. As a result, the trapped-wave oscillation may be
regarded as totally decoupled from the beam, and beam
electron trajectories are only slightly perturbed in pas-
sage through a soliton. Radiation produced by the
scattering of the beam electrons in the turbulence may
be likened to a "bremsstrahlung" on the localized soli-

tons.
Knowledge of the detailed structure and spectrum of

strong turbulence is needed to model the radiation. Sta-
tionary but spherically symmetric three-dimensional
solutions to the Zakharov nonlinear wave equations have
been derived, s but their realization is questioned because
their symmetry is inconsistent with the development of
the density cavity by ponderomotive pressure. 7 Rather,
strong turbulence appears to be a dynamic process
wherein a nonlinear instability drives the cavitons to spa-
tial sizes as small as five Debye lengths (X,), at which

point dissipation processes intervene. (In the theory of
Landau damping, this is also the smallest wavelength for
which damping is negligible. )

A plausible model for a fully collapsed soliton which is
not spherically symmetric is based on the following sim-

ple, localized, dipolar charge-density oscillation:

p-po(p r/a)exp( —r'/a ) exp( im, t). —

The distribution oscillates at the plasma frequency co„
has a dipole moment in the direction of the unit vector p,
and is localized by a Gaussian envelope function with
scale length a. When the light travel time across the
caviton is small compared with the period of oscillation,
the phase of the electric field over the acceleration region
may be assumed to be the same. This condition is readi-

ly satisfied for all frequencies above the plasma frequen-

cy as long as a«2xc/co, . The envelope function is also
assumed to be constant over the radiation time scale,
which is justified if the supersonic collapse time is much
greater than the light transit time. This condition is
satisfied if

(2)
8nnokaT, 3(2n)2 m

'

where Eo is the central electric field, no and T, are the

1302 1988 The American Physical Society



VOLUME 60, NUMBER 13 PHYSICAL REVIEW LETTERS 28 MARCH 1988

plasma electron density and temperature, and M/m is the ratio of ion to electron mass. The Zakharov theory of strong
turbulence is regarded as valid when E$/ SnnpkaT « l.

The electrostatic field associated with the dipolar charge distribution is calculated with Poisson s equation. In spheri-
cal polar coordinates with 8 measured relative to the direction of the dipole moment, the electrostatic field is

E,(r, 8) = co—s8(kappa /r )exp( —iro, t)[(1+r /a )2(r/a)exp( r /a—) —Wzerf(r/a)],

Ee(r, 8) =sin8(kappa /r 3)exp( iso—,t) [—(r/a)exp( r /a —)+ —,
' Jx erf(r/a)],

Et,(r, 8) =0.

(3a)

(3b)

(3c)

Near the center of the soliton, the electric field is simply

Ep —p exp( —ice, t )..2xa Pp

3 a2
(4)

A spatial contour plot of constant electric field magni-
tude is presented in Fig. 1. The validity of this formula-
tion is supported by comparison with numerical solutions
of the Zakharov equations. Over a range of initial condi-
tions, modulationally unstable Langmuir waves, in fact,
appear to evolve into dipolelike collapsing solitons.

The calculation of radiation from beam electrons pass-
ing through the soliton follows from the instantaneous
acceleration of the electrons in the electrostatic field.
The classical radiation for a moving charge is'P

A

C(x, t) -— x [(n —P) xj], (5)(1-n P)'R

where "ret" means evaluated at the retarded time and n
is a unit vector in the direction of the observation point,
which is a distance R from the source.

The radiation field is a function of the angle L between
n and P, and the orientation of the soliton's dipole mo-
ment. In the following derivation, two coordinate sys-
tems are used. The coordinate system centered on the

p e„'(P —cosZ)/y+p e,' sinZ/y3

(1 —P cosX)

8y e [p' ey(Pcosx 1)/y]/(1 P cosz)

e —, n ppa nbe /mc Rexp( —iso, t).

(6a)

(6b)

(6c)

The special case of p e,' is interesting because this is
the natural orientation of fields produced in the plasma
by the beam. The rms power radiated per unit area de-
rived from the radiation field is

soliton is indicated by primes, and has e,' in the direction
of the beam velocity. The plane x'-z' is coincident with
the x-z plane of the observer's coordinates (unprimed),
which has its e, in the direction of n.

The total radiation field is a coherent sum over the ra-
diating electrons in the soliton. The contribution from
an individual electron is calculated from Eq. (5), with
the substitution of the complete relativistic expression for
the acceleration caused by the force of the soliton elec-
tric field [Eq. (3)], and with the use of the unperturbed
velocity vector. The phase of the accelerating field at the
retarded time in diff'erent parts of the soliton can be as-
sumed to be the same. Multiplying the result by the
number density in the beam provides the radiation per
unit volume as a function of position within the source
region. The total radiation field is found by integrating
over source angle and radius, with the result

-cR' ' ""
(1 —Pcosx)n

l
-a a S P

FIG. 1. Contour plot of electric field amplitude for soliton
with scale length a and dipole moment in direction of p. In
evenly spaced arbitrary units, 1 is the lowest and 8 the largest
amplitude.

For large values of P, the angle for maximum emission is
X-I/2y. It is not surprising that the radiation pattern
has considerable relativistic beaming. 'P

Equation (7) is the power radiated coherently by the
beam at the frequency of oscillation of the dipole. A sin-

gle electron encounter actually produces a range of fre-
quencies characteristic of collisional bremsstrahlung,
where the role of the minimum impact parameter is
played by the scale length a. This can be illustrated by
the study, in detail, of the radiation from an electron
passing through the center of the soliton, once again for
the special case for which p e,'. The electric field is po-
larized along the observer's x direction. The energy ra-
diated per unit solid angle per unit frequency interval is

1303



VOLUME 60, NUMBER 13 PHYSICAL REVIEW LETTERS 28 MARcH 1988

expressed in terms of the Fourier integral of this field component'o:
2

dI(ap) e e . 2
~ E,( I pct/(1 —pcosX) I,O)

sin X
2xc my c " (1 —Pco~) 3

where the argument of the function E, [given in Eq. 3(a)] is the electron s retarded radial position at the time t, assum-

ing an unperturbed orbit (Born approximation). With the fact that most of the radiation is beamed at the angle 1/2y,
the frequency spectrum for this orientation of the dipole moment can be written

dI (ru) E$ a 2 27~Tc, Iw((a —m, ) I', (9)
n «c'

where

(10)

dI(rn) E$ a 2 27
O'TC y'!~2(~- m. )+~i(m-m, )/2 I

'.
do «c' 4~

The function A ~(ro) is same as in Eq. (10), and A2(ro) is

~ OO

A~ N
aru ' erf(t) ate

COS
2y c 2y c

rrT is the Thomson cross section. The function A t(to) is plotted in Fig. 2. The broad-band spectrum is observed to peak
near the frequency 2y c/a.

The frequency spectrum may be solved in a similar fashion for the case when the dipole moment of the electrostatic
charge is oriented perpendicular to the velocity vector of the electron, i.e., p e„', as might occur in fully developed tur-
bulence:

&2(ro) =expl —(aro/2y c) /4].

The spectrum extends to 2y c/a, but now exhibits a
low-frequency tail (see Fig. 2).

In the sutnmation of such single-particle spectra over
radiating beam electrons, phase averaging over electrons
with different arrival times causes the radiation to be

coherent only near the plasma frequency (namely, the
dipole oscillation frequency). Thus, without an ancillary
process, such as beam bunching, energy in the broad-
band part of the spectrum will be less by many orders of
magnitude, roughly y /znba, relative to the fundamen-
tal frequency. With beam bunching, the power spectrum
will extend out in frequency according to the inverse

I I I I I I I II
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.01

nb/nn
10

n)/(2y c/a)
FIG. 2. Spectral functions A & (ru) and A 2 (ro) +A ) (ro)/2 cor-

responding to solitons with parallel and perpendicular orienta-
tion, respectively, relative to the beam velocity vector.

FIG. 3. Beam parameter space differentiated according to
the dominant radiation component for a transverse dipole
orientation: In region I, the maximum of dP/drt is larger for
plasma emission than for beam emission; in II, the beam emis-

sion dominates.
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transit time of the bunch across the soliton. Actual
power spectra may be computed from knowledge or as-
sumption of the soliton amplitude, scale length, number
density, and statistics of the beam fluctuations.

Emission from the plasma will now be computed for
comparison with Eq. (7). The explicit formulation of the
high-frequency electron density in Eq. (1) makes the cal-
culation of the plasma emission remarkably simple, since
it follows directly from the classical formula for power
radiated by an oscillating dipole. The dipole moment of
the assumed charge distribution is (tr3i2poa /2)p, so that
the resulting time-averaged power per unit solid angle is

dP 27 2. z E)tr'sin'e rrTc(noa') ' (13)do 8 Str

Other soliton radiation models" derive their radiation
integrals for the fundamental emission from an expan-
sion in a purely longitudinal field, which makes the non-
linear current third order. This excludes the current pro-
ducing the radiation given in Eq. (13), by implicit as-

sumption that the soliton scale length is large relative to
the electromagnetic wavelength, and scattering into the
electromagnetic wave is incoherent. To argue that the
opposite scaling adopted here is more appropriate for
evolved solitons only a few Debye lengths in size, it
suffices to use the fact that c» (kuT, /trt) 'i .

Comparing the emission from the beam with conver-
sion of the plasma oscillations, it is found that the max-
imum dP/d 0 is larger for beam emission of moderately
relativistic beams (y 3) when the beam number density
is greater than 10% of the plasma density. This suggests
a new regime of beam-plasma radiation where the beam
radiation dominates (see Fig. 3). The beam emission is
forward directed if the beam velocity is relativistic. An

additional mechanistn, such as beam bunching, can pro-
vide the coherence necessary for substantial emission
above the plasma frequency.
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