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Two-Dimensional Guiding-Center Transport of a Pure Electron Plasma
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Cross-field particle transport is discussed for the case of a magnetically confined pure-electron-plasma
column. The analysis is based on a 2D guiding-center model and yields a flux which scales with magnet-
ic field strength like 1/8. The magnitude of the flux exceeds that predicted previously provided that two
conditions are met. The axial bounce frequency for a typical electron must exceed the ExB drift rota-
tion frequency, and this rotation frequency must be a nonmonotonic function of radius.

PACS numbers: 52.25.Fi, 52.25.Dg, 52.25.Wz

Recently, a guiding-center model was introduced to
describe like-particle transport in a magnetically
confined pure-electron-plasma column, ' and this paper
provides a further development of the model. The cross-
field velocity of an electron is given by vE =c(ExB)/8,
where B is the uniform axial magnetic field and E is the
electric field produced by the other electrons. The elec-
tric field consists of a mean-field component (E„(r)) in

the radial direction (because the plasma is nonneutral)
and a fluctuating component. The mean field produces
a zeroth-order drift rotation, with frequency coE(r)

—c(E,(r))//rB, and the fluctuating field produces the
radial flux to be calculated. This model provides a good
approximation2 when the characteristic cyclotron radius
and cyclotron period are small compared with the length
and time scales of interest in the field E, and that is the
case here.

To understand the distinction between the present
work and the previous work on this model, ' we first note
that the fluctuating field produced by electron 2 is
eff'ective in producing transport of electron 1 only if elec-
trons 1 and 2 interact resonantly. They must satisfy a
resonance condition of the form kv i+leva (ri) =kv2
+lcog(r2), where vl and v2 are the velocities of electrons
1 and 2 along the magnetic field, and coE(r i) and coE(r2)
are the rotation frequencies. The interaction is efl'ected

through a Fourier component characterized by axial
wave number k and azimuthal mode number I. Here, we

have used the azimuthal symmetry of the system and
have imposed periodic boundary conditions along the
field (i.e., k =2trn/L).

The previous work focuses attention on the Debye-
shielded portion of the interaction field; that is k = I/XD,
where XD is the Debye length. Since v/ED=cop is much
larger than coE in the typical operating regime of pure-
electron-plasma experiments (where v is the thermal ve-

locity and cop is the plasma frequency), the resonance
condition reduces to kvi =kvq. In contrast, here we
focus attention on Fourier components for which kv
« coE, so that the resonance condition reduces to
!cog (r i ) 1coF. (r2).

This latter resonance condition can be satisfied for ri

wr2 only if the rotation frequency coE(r) is nonmonoton-
ic; of course, the self-interaction at ri =r2 does not pro-
duce transport. For a current series of experiments,
density profiles corresponding to nonmonotonic coE(r)
are often used, and it is these experiments which
motivate the present theory. An order-of-magnitude
comparison shows that the present flux is larger than
that calculated previously, provided that v/L & coE, and
this is the operating regime of the experiments. Inciden-
tally, the only Fourier components for which kv«coE,
v/L & coE, and k =2ttn/L are those for k =0, and so we
consider only these components.

The flux calculated here scales differently with mag-
netic field strength than does that calculated previously.
To understand this difference, simply note that the
effective interaction time for electrons 1 and 2 is set by
the mismatch in the resonance. For the previous treat-
ment, the interaction time is set by differential streaming
along the field lines ji.e., [k(v 1

—v2)] t, which is in-
dependent of field strength, whereas here the interac-
tion time is set by differential rotation [i.e., [Icoz(r&)

Ical(r2)] '), w—hich scales like 8. The flux obtained
previously scales like 8, whereas that obtained here
scales like 8

This latter scaling is in agreement with observation for
experiments which satisfy the two conditions that coE(r)
is nonmonotonic and v/L & coE Of co.urse, the experi-
ments have been designed to ensure that like-particle
transport dominates over transport due to other effects
such as field errors.

Our focusing attention on the k =0 Fourier com-
ponents is equivalent to considering the 2D dynamics of
charged rods. There has been much theoretical work on
2D transport for the case of a neutral plasma, and it is
instructive to understand the relationship of that work to
the present work. The basic difference is that in a neu-
tral plasma the rotation frequency is taken to be zero,
and so the resonance condition coE(rt) =coE(r2) is trivi-
ally satisfied everywhere. This multiplicity of resonant
interactions makes the problem much harder than the
present problem. In technical terms, the rotation fre-
quency coE(r) provides a linear term in the propagator,
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and when this term vanishes (or is constant) over a range
of r values, the problem becomes fully nonlinear.

Another problem that is closely related to the present
work is the recent quasilinear analysis of the diocotron
instability. A plasma column with a nonmonotonic
coE(r) (corresponding to a nonmonotonic density profile)
can be unstable to diocotron modes. When the modes

grow to large amplitude, they react back on the density
distribution, producing rapid transport in a stabilizing
direction. Here, however, we consider the simpler case
where raE(r) is nonmonotonic, but the plasma is still
stable (in accord with the experiments), and the trans-
port is produced by fluctuations in the field, rather than

by unstable modes.
For certain simple profiles, (e.g., square profiles), one

can show that the diocotron modes are stable if the non-

monotonicity is sufficiently mild. However, we do not
justify the assumption of stability on the basis of a
theoretical argument, which to be complete would re-

quire the analysis of arbitrary smooth profiles and finite

length effects. Rather, we rely on the experimental ob-
servation that the plasma is stable for certain nonmono-
tonic profiles, and we intend our theory to apply only to
such profiles.

Proceeding now to the analysis itself, we define the
Klimontovich density distribution as

1 b(r rj(t))b(8— ,(t))—r, 8, t
J-1 L r

distribution evolves according to the equation

la/Bt+(c/B)zxVe Via=0, (2)

(3)

and by subtracting the average of Eq. (2) frotn Eq. (2)
itself, we obtain an equation for the density fluctuation
bn To low. est order, we may drop terms in this equation
that are quadratic in fluctuating quantities; the result is

c 8b Bn

at a8 B. a8 ar
=+~E(r) bn — =0,

where @(r,8) is the self-consistent potential (i.e.,
V2@=4' JV). As a boundary condition, we take @(r,8)
to be constant on a cylindrical conducting wall at radius
r =R.

Following the usual Kimontovich procedure, we

define the average density n(r) =(JV},where the angular
brackets signify an ensemble average over uncorrelated
initial positions. The correlations are allowed to develop
through the dynamics. The density fluctuation is given

by bn(r, 8, t) =Sf(r, 8, t) —n(r). Likewise, we define an

average potential (mean field) p(r) =(4) and a potential
fluctuation bp(r, 8,t) =@(r,8, t) —p(r). Of course, p(r)
and bp(r, 8,t) are related individually to n(r) and
Bn (r, 8, t ) through Poisson's equation.

By taking the average of Eq. (2), we obtain a sitnple
expression for the radial flux,

where [ri(t), 81(t)] specifies the transverse position of
the jth electron. Here, each electron has been averaged
over z to form a rod of length L. Note that rj(t) and

8J (t) are implicit functions of the initial positions
tr i (0),8i (0), . . . , re (0),8' (0)l. For brevity, we will

denote the initial positions by Iri, 8i, . . . , r&, 8~I. The

where coE(r) =(c/Br)8p/'dr. Incidentally, for the 2D
dynamics of charged rods in a neutral plasma, coE(r)
and tin/Br are both taken to be zero; so the dynamics is
dominated by the nonlinear terms that may be neglected
here.

By Fourier analysis in 8 and Laplace transformation
in t, Eq. (4) reduces, for /~0, to

cii an(p+ilcoE(r) jan(r, l,p) — by(r, l,p) = +-
Br r ' ' 1-i L ri2n

where the right-hand side is an explicit expression for b'n(r, l, t =0). This equation must be solved simultaneously with

Poisson s equation, which also relates bg(r, l,p) and bn(r, l,p). One can easily check that the solution for b'p(r, l,p) is

given by

&y(r, l,p) =g, , by(r, ri, l,p),
1.-1 2' p+i coE(rz)

where

1 8 1) 12
T

r Br Br r2
4necil 8n 1 ( l )

b(r rj )
Br Br p+ikoE(r) ' ' ' r

(7)

The solution for bn (r, I,p) is now given trivially by Eq. (5).
The substitution of these solutions into expression (3) for the flux and the carrying out of the average over uncorrelat-
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ed initial positions yields the result

2
c 41M g dp dp (p+p )r

Br 2tcL t " (2ni)

( i—i)by(r, r, ,
—i,p')

2tcLr&drj n rj [p' —ilcoE(rj )][p+ilcoe(r~)]

cii c)n by(r, r, , l,p) b(r r,—)
X

Br Br p+ilcoE(r) 4tcerj

where the p and p' integrals are to be carried out along a path to the right of any singularities.
At this point, we make the Bogoliubov Ansatzs and assume that the fluctuations relax to their asymptotic form on a

time scale which is short compared with the transport time. To be specific, we evaluate the p and p' integrals using the
Cauchy residue method retaining only the poles along the imaginary axis [e.g. , p+ilcoE(r) =0]. The poles and branch
cuts associated with by are assumed to give damped contributions, and t is chosen to be much larger than the damping
time but still small compared with the transport time. The result of this evaluation is

I,(r) = — g rj drj n(r~) ' by[r, r&, l, —ilcoe(r)] tcb'(lcoE)( ) —lcoE( J))c (4tce)' " i'c Bn

Br 2tcL t "o Br r

lb(r —r, )+ Imply [r,rj, l, ilc—oq(r)] ', (9)
4zerj

where use has been made of the reality condition by*[r, r~, l, ilcoE(r—)] by[r, r~, l,ilco—E(r)]
It is convenient to rewrite the last term in the braces. To this end, set p =ilcoE(r~)+e in Eq. (7) and multiply both

sides of the equation by by [r,r, ,l, ilcop(r, )—]. Integration of the resulting equation over rdr and the taking of the
imaginary part of both sides yields the relation

Imby*[rj, r~, l, ilcoE(r—j)]= —(4tcecl/B) dr(8n/Br) ( by[r, rz, l, icop(rz)—] ) tcb(icoE(r) —lcoE(rz)).

Replacement of the dummy variable r by r' in Eq. (10) and substitution of this relation into Eq. (9) then yields the
desired result for the flux,

(4tce)'c' "R a1,(r) =
2 g f

i f
r'dr'f by[r, r', l, —ilcog(r)] f b(coe(r) —coE(r'))

2Lg r I r' 8r'
n (r)n (r ').1 a

r Br

As one expects for transport produced by resonant in-
teractions, the flux is nonzero unless coe(r) coE(r') for
r&r', that is, unless coE(r) is nonmonotonic. Also, the
expression for the flux has the expected formal proper-
ties. To see that the transport conserves the total ca-
nonical angular momentum [i.e., Po frdr(eB/2c)r
xn(r, t)], as one expects for a plasma confined in a cy-
lindrically symmetrical geometry, note that the integral

f rdrI „(r)r vanishes by antisymmetry under the inter-
change of r' and r. To see that the transport conserves
the total electrostatic energy, as one expects for EXB
dynamics, note that the integral f rdrE, I,(r) vanishes

by antisymmetry under interchange of r' and r. Here,
one must use the relation E,(r) = —(B/c)rcoE(r). Also,
one can easily check that the transport increases an en-

tropy function, that is, dS/dt ~ 0, where

S= —„rdr n(r, t) ln[n(r, t)]

In the experiments, coE(r) has a single peak, and so
for a range of r values there are two corresponding points
such that coE(r) =cd(r') with rar', and at such points
the flux need not vanish. To estimate the order of mag-
nitude of the flux at one of these points, we replace the
sum pt ~i ~ ~by~

z by unity [this is an underestimate if

mErnr- n
cl inn (r)/8r

'd lncoE(r)//Br

where the first bracket is the zeroth-order azimuthal flux
divided by the total number of electrons (N=ntcr2L)
and where we have set coE = (2tcnec)/B

The Klimontovich analysis presented here can be gen-
eralized to include interactions for k~0 (as will be
shown in a future publication), and by focusing attention
on the contribution from wave numbers in the range
k-I/A, n one recovers the result obtained previously by
use of the Bogoliubov-Born-Green-Kirkwood- Yvon
hierarchy. ' The ratio of the flux calculated here [Eq.
(12)] to that calculated previously is approximately
(v/coEL) [10 /In(v/hv)], where the factor In(v/b, v) was
defined previously' and may be taken to be of order 10.
The flux calculated here dominates when the axial
bounce frequency (vL) exceeds the rotation frequency
coE. Of course, this assumes that cos(r) is a nonmono-

t the frequency icoE(r) is near the frequency of a normal
mode] and retain only one of the two derivative terms.
The result is
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tonic function of r.
Finally, we note that the nonlinear terms neglected in

Eq. (4) would broaden the resonance condition toE(r)
=toE(r') One expects the broadening, v, to satisfy the
relation v2=l (BroF/Br) (hr), where (hr) =D/v and
D is the test-particle diffusion coefficient. To estimate D
we set I -D l)n/Br. One sees that the resonant broaden-
ing is small (i.e., v « rl i 8taE/dr i ) provided that
rl i 8coF/t1r i »1, where r nr/I is the transport time.
In the experiments, this is the case over most of the plas-
ma radius.
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