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Molecular Dynamics of Poiseuille Flow and Moving Contact Lines
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We report on molecular-dynamics simulations of the low-Reynolds-number flow of Lennard-Jones
fluids through a channel. Application of a pressure gradient to a single fluid produces Poiseuille flow
with a no-slip boundary condition and Taylor-Aris hydrodynamic dispersion. For an immiscible two-
fluid system we find a (predictable) static contact angle and, when accelerated, velocity-dependent
advancing- and receding-contact angles. The approximate local velocity field is obtained, in which the
no-slip condition appears to break down near the contact line.

PACS numbers: 47.15.Gf, 51.10.+y, 61.20.Ja

Although the low-Reynolds-number flow of continu-
um Newtonian fluids has been successfully described by
the Stokes equations for over a century, there remain a
number of unsettled questions concerning the appropri-
ate boundary conditions at solid surfaces and fluid inter-
faces. For example, overwhelming phenomenological
evidence supports the ‘“‘no-slip” condition of zero fluid
velocity at a solid boundary,! yet there is no compelling
theoretical argument for why this should be the case.? A
problem of principle arises when a meniscus separating
two immiscible fluids moves along a solid surface. When
the Stokes equations are combined with the usual bound-
ary conditions, the viscous dissipation diverges logarith-
mically at the contact line.> This singularity indicates
that the problem is not properly formulated, but at
present the cure is not known. Various proposals have
been advanced*” to yield a finite result, e.g., a finite “slip
length,” an appeal to surface roughness, nontrivial inter-
facial shapes near the solid, and precursor films, but no
consensus exists.

In these and related problems, the macroscopic flow
description must be augmented with knowledge of the
microscopic physics of the boundary region between the
fluids. To this end, we have carried out molecular dy-
namics (MD) simulations®’ of viscous fluid flows past
solid boundaries. We have studied systems consisting of
1536 molecules (per fluid) confined to a region of size
40-100 A, over times up to 10 7 sec, the computations
requiring hours of central processing unit time on a Cray
XMP-12. Our results indicate that even such a small
system behaves in almost all respects like a continuum
fluid in motion.

The starting point is a standard molecular-dynamics
code® in which each pair of molecules interacts through
a Lennard-Jones potential
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cut off at r =2.50, where 6V is chosen so that the force
vanishes at the cutoff. For numerical illustration, we will

VLJ(’)=4€[ +réVv (1)

refer to parameters appropriate for liquid argon, where
the distance and energy scales are o =3.4 A and e/kp
=120 K, the natural time unit is t=c(m/e)2=2.16
x107!2 sec, and the molecular mass is m =40 a.u.
Newton’s law is numerically integrated with a fifth-order
predictor-corrector scheme, with a time step of 0.0057.
The molecules are initialized on an fcc lattice whose
spacing is chosen to obtain the desired density, with ini-
tial velocities randomly assigned subject to a fixed tem-
perature. The substance is then allowed to melt. The
system at rest is placed in a box with periodic boundary
conditions on all sides, so that a molecule exiting from
the box is reinserted on the opposite face, and periodic
copies of the molecules are used in the force computa-
tion. We chose density p=0.8 and temperature 1.2¢/kg.

We have modified this algorithm to provide constrain-
ing walls on two sides, while retaining periodicity in the
other two directions. In contrast to most earlier work
with solid boundaries,®~1? we create a wall with a molec-
ular structure.'® To this end, we assign the top and bot-
tom two layers of the initial fcc lattice a heavy mass,
my=10'"m, but allow these to move in accord with the
equations of motion. In this way collisions between fluid
and wall molecules conserve energy, and the walls retain
their integrity over the duration of the simulation, al-
though eventually they would disintegrate. In Fig. 1 we
show an x-z snapshot of instantaneous molecule positions
after 4000 time steps of constant-temperature equilibra-
tion, in which molecules at all values of y are superposed.
Near the walls one sees molecular ordering both span-
wise in z, consistent with other molecular-dynamics stud-
ies of fluid systems with boundaries,'"!? and along the
wall as in experiment. '4

We simulate Poiseuille flow by introducing an analog
of gravity—a force mgXx applied to each particle. The
key problem here is to obtain a mean particle velocity as
a function of z that can be distinguished from the
thermal fluctuations. After trial and error we settled on
values g~0.10/72, which correspond to Reynolds num-
bers ~0.1-1. We compute the average velocity by bin-
ning particles in z, and finding the mean velocity in each

1282 © 1988 The American Physical Society



VOLUME 60, NUMBER 13

PHYSICAL REVIEW LETTERS

28 MARCH 1988

o o o o o o o o o o o o o o o =]
12+ © © o o o o o o ©o o o o © o o o
S +
Bohisn 4 e % bR 2. 88 Eed e w
SYRRCERI IR IR SRS T R,
-+, had -+ * * r
AR . % tes : e
-4 * - ¥ . + -
Vet 28 5 T L AR ST RN s
TR T e T, T ST e Rty e -
R B i & . .
A A U e PO e &
L ST A SR S S G R S R TP Dt
e S el S St At B s L
. N .
Pt g te, v a0 L8 o et + Rt X
84 v T I e Y et T
£ oy he v 3 Tuet e RSt s
DT SRR N + et TN+ bl I S SO
A K, +ov o TP LT s f et N
Z 4o+ .3 ".. 0*‘“‘4‘:‘ P + ‘o‘ ";‘ +4 ¥ &+ 0% s+
ey 4 + -~ + h
[+ + o+ e . 4+ ++
R R I D R LIS TN E LR S AP L USSP
N
61, 13 e TRl I LT s
- + t + ‘. + &0+
ST . - st - IER R -t
St i TRl e e e
1 N . -
b2 e of 3L T T W PO VIR S P piad
AT IR e L adar T S
Fr e FOW 0 My, ¥ e e T
4_:;‘¢‘.‘¢2 + N T 4 eee Hee e D
: R LR 1 . P AP RIS T e
.
#e LIRS ST S SR PP PR
- + ¢ +, ‘\~ NS N . + DRI AR AP S
1., .
Lt % e’ A w1 AP
+ + e
. % + !
* 6‘ +
. .
RN
D
# 0o
o o o
0 o— : —e

FIG. 1. Molecular configuration without flow: snapshot of
particle positions after 4000 time steps.

bin averaged over 5000 time steps. We further average
over initial sets of particle velocities. This procedure cor-
responds to a combined spatial, temporal, and run aver-
age, as would be the case in a laboratory measurement.
Two alternative procedures were followed with regard to
temperature, continued equilibration, or free heating
(work is done on the system by gravity) in which case
the temperature can rise up to 10% in our runs. Figure 2
shows a typical velocity profile; the two sets of points
represent distinct realizations. The solid line is a least-
squares fit to the velocity profile predicted by the Stokes
equations u(z) =(z —z,)(z,—2z)pg/2u, where z,, are
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FIG. 2. Velocity profile in Poiseuille flow.

TABLE I. Measured viscosity and longitudinal dispersivity
for various accelerations.

gt¥/o uot/m Dyt/c?

0 e 7.47x10 "2
0.025 1.85+0.5 0.13
0.05 2.05%0.5 0.29 £0.03
0.075 1.98 0.5 0.58
0.1 1.85+0.25 0.77x0.15
0.2 1.80*0.15

0.4 1.80*0.15

the wall coordinates and p the viscosity. The fit deter-
mines the viscosity with the result shown in Table I,
p=1.9(me)'?/*=0.18 cP for argon, consistent with
values obtained by Hoover et al.'® The viscosity value is
quite robust, showing no significant variation either as a
function of MD sample size or of temperature. For
all cases considered we find z;/6=1.57*+0.3 and z,/c
=11.36 = 0.3, with a tendency for z, to decrease and z,
to increase with g. The wall layers are located at
z/c=0, 0.86, 11.97, and 12.83, and the interaction po-
tential has a hard-core radius O(o), so that up to an
unavoidable ambiguity of O(o), the velocity vanishes at
the “walls.” Thus the no-slip condition arises naturally
from reasonable microscopic physics assumptions.
Further insight into Poiseuille flow follows from exam-
ination of the motion of individual molecules. In Fig. 3
we show two typical trajectories, for molecules that be-
gin near the wall and in the bulk, respectively. The
motion is “Brownian,” with a drift along X, and with oc-
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FIG. 3. Two representative particle trajectories in Poiseuille
flow (dashed and dotted lines); the horizontal solid lines are the
centers of the wall molecules.
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casional brief localization near the wall.'® At least for
the interactions used here, there is no binding to the
wall.

The effect of the mean flow on diffusion can be studied
quantitatively. Consider the diffusivity in the flow direc-
tion,

U’w?

Do+ 100D;” 2)
In the first part of this equation, Ax is the displacement
of a molecule in time Az, and the brackets represent an
ensemble average. The second equality is a fit to the nu-
merical results given in Table I, where U is the average
velocity, w is the width of the channel, and Dy is the
dispersivity at g =0. This equation should be compared
with the Taylor-Aris hydrodynamic dispersivity'’ for
Poiseuille flow in a tube of radius r: Dy=Dpng+U?*r?/
48D 0. Here we have a slot rather than a cylinder, and
there is a finite-sample variation in Do, so that the pre-
cise numerical factor 48 need not apply, but the func-
tional form found in the simulations agrees with the con-
tinuum result.

Having established that our methods for introducing
solid walls and pressure gradients give results fully con-
sistent with continuum fluid behavior, we introduce a
mechanism for segregating immiscible fluids. A simple
effective choice is to add an additional repulsive interac-
tion between species,

Vii(r) =Viy(r) + (c; — ;) *4e(r/o) ~5, (3)

_ 2
D”EA,H_I}L ((Ax zizt&x» )

where ¢; is a “pseudocharge” associated with species i.
The bulk interaction of pure fluid is thus unchanged, but
we can vary the interaction between the two fluids 4 and
B and with the wall W. We have chosen ¢4 =+0.5,
cg=—0.5, and cy=0.1. Initially 1536 molecules of
each fluid occupy half an fcc lattice with a plane bound-
ary, and the lattice then ‘“melts” for 4000 time steps.
The instantaneous configuration after 4000 steps is
shown in Fig. 4(a). Outside of a thin transition zone, the
fluids retain their initial segregation, and fluid 4 is more
strongly attracted to the wall, as expected. The observed
contact angle is in rough agreement with a simple argu-
ment due to Israelachvili,'* which predicts 8 ="79°.

The last step is to apply an acceleration to each parti-
cle, with the result shown in Figs. 4(b)-4(d) at intervals
of 8000 time steps after melting, for the choice g =0.1.
Two slugs of fluids 4 and B chase each other in the
periodic geometry, with advancing and receding contact
angles which differ from the static angle and from each
other. Just this kind of behavior is seen in experiments.*
The average velocity of the interface is roughly constant,
uint==0.20/7, but the shape gradually changes at least in
part because of the film of fluid 4 beginning to form
along the walls. When the acceleration is turned off the
slugs come to rest, and we have observed the wall film
beginning to retract into the bulk. '®

Having set up a successful computer model of a mov-
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FIG. 4. Time sequence of a two-fluid system in motion: in-
stantaneous particle positions after (a) 4000, (b) 12000, (c)
20000, and (d) 28 000 time steps. (e) Average velocity field in
the rest frame of the interface.
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ing contact line, we can begin to ask detailed questions
about the flow. Figure 4(e) shows the velocity field in
the rest frame of the interface. (Note that while the in-
terface shape changes with time, it does not do so
significantly over the later time-averaging intervals, and
this reference frame is sensibly defined). To obtain the
figure we use a 32x 16 array of x-z bins moving with the
velocity of the interface, and average the velocities of
molecules occupying each bin over 4000 time steps. An
average bin contains eight molecules—not a large num-
ber, but enough to obtain reproducible results when
different time intervals are considered. The walls are
moving to the left in this reference frame, and the fluid
velocity near the wall coincides with the wall velocity,
except near the contact line where the no-slip condition
appears to fail. In addition, we observe a jet of fluid into
the interior from the contact line, as well as hints of
closed eddies of fluid behind the interface. The presence
of such jets and eddies are consistent with the experi-
ments and kinematic analysis of Dussan and Davis. '

To summarize, we have combined several ingredients
of the MD method for a novel study of viscous flows of
one and two immiscible fluids near solid boundaries.
Despite a computational restriction to small samples, our
results in all respects display the characteristics of bulk,
continuum fluid flow. This, we believe, establishes the
viability of MD as a calculational method for addressing
the troublesome points we discussed at the beginning.
Already at this level we have illustrated the ambiguities
present in the *“no-slip” boundary condition, and exhibit-
ed spatial structure in the flow field for diphasic flow.
We are in a position to explore many more detailed
quantitative aspects of these flows, albeit somewhat slow-
ly because of the time intensiveness of these simulations.

We thank John Ullo and Sidney Yip for launching us
into MD and sharing their expertise, Elizabeth Dussan
for discussions of the fluid dynamics of contact lines, and
Stephen Garoff and Jaco Israelachvili for advising us

about molecular structure near solids.
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