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Attosecond Beats in Sodium Vapor
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Transient, time-delayed, four-wave mixing (TDFWM) experiments have been performed on the Na D
doublet with use of a novel angled-beam geometry. The eff'ects of petahertz superposition-state modula-

tions have been observed in the integrated TDFWM signal as a function of the time delay. As the time

delay is varied, the lowest-order mixing signal modulates with a period of 980 as—corresponding to the
sum frequency of the two Na D lines. Higher-diff'raction-order mixing signals contain modulation com-

ponents at integral multiples of the doublet sum frequency.

PACS numbers: 42.65.Ma, 32.90.+a, 42.50.Md, 42.65.Ft

Research on ultrafast phenomena is characterized by a
mixture of techniques and instrumentation of varied na-

ture. ' Several practical schemes provide light pulses in

the middle femtosecond regime and recent developments
now yield excitation pulses with durations as short as 6
fs. ' Less direct methods using broad-band light sources
have the potential of exploiting short autocorrelation
times in order to study ultrafast phenomena by way of
transient four-wave mixing. ' These latter experi-
ments have been shown to be capable of obtaining both
spectroscopic and relaxation information in the pi-

cosecond and femtosecond regimes. The extension of
this technique to a much shorter time regime is promis-

ing. In the ultrafast regime, the establishment of a well

defined delay time poses a potential difficulty because of

the angling of the excitation beams with respect to each
other. This problem is relevant, however, only when we

make relaxation measurements, not when we look at
modulation effects.

The observation of high-frequency modulation effects
in time-delayed four-wave mixing (TDFWM) does not
require the use of broad-band excitation pulses when re-
laxation times are long. This is best seen by our viewing

the modulation process not as a consequence of
superposition-state modulation" but rather as due to an
interference of scattering processes' from atomic grat-
ings produced by excitation of separate atomic optical
transitions. In a previous study" involving modulation
beats the outputs of two conventional lasers, tuned sepa-
rately to the two Na D lines, were combined to create an
excitation field of the form

in~tiki r+ ik2 r
rid+

— —n'i~ iki r+ ikq r irjnI +-

where the primed and unprimed k vectors correspond to
the frequencies 0 and 0 ', and r is a variable relative de-

lay between the prompt and delayed fields which are in-

dicated by the subscripts 1 and 2, respectively. The op-
tics were adjusted so that ki —k2=kt —k2. " A mixing

signal is generated with wave vector 2k2 —kl which

modulates at the difference frequency 0' —0 as a func-

tion of r. In the case of the Na D-line excitations the

difference frequency is 530 6Hz resulting in a modula-

tion with a period of 1.9 ps. Similar results have been

seen with use of broad-bandwidth excitations in atomic
vapors of both Na ' and Rb. In the case of the Rb D
line the difference frequency is much larger yielding a
beat with a period of 139 fs. To see such beats in the at-
tosecond regime the difference frequency would have to
be in the petahertz regime. Alternatively, attosecond
beats can be realized by the adjustment of the beams so
that ki —k2 = —(ki —k2), whereupon the modulation

frequency is the sum rather than the difference of the in-

dividual excitation frequencies. The penalty is that mix-

ing signals are no longer (see Ref. 11) produced when

the excitation pulses are delayed by an amount greater
than their pulse duration.

The origin of the sum-frequency beats may be under-
stood in terms of a simple induced-grating analysis.
With the double-frequency excitation field given by Eq.
(1), each resonant component generates an atomic grat-
ing with spacing 2tr/i ki —k2i. This grating scatters the
wave labeled k2 by an angle n8 (for scattering order n),
where 8 is the angle between kt and k2. The two grat-
ings formed by the resonant excitations at n and n ' are
themselves separated by (n'+ n)rl i kt —k2i so that the
phase shift 5@ in the two scattered waves at 0 along n8
is just A@=n(Q'+Q)r. As a result, sum-frequency
modulations are expected in the interfering four-wave
mixing signals as a function of r. This simplified
analysis is correct only for n=l where it includes all
scattering pathways. The correct expression for the
modulation behavior for all n is obtained by direct calcu-
lation of the induced polarization frotn a step-function
excitation field of the form of Eq. (1) on a three-level
system whose levels are sufficiently separated so that the
resonant excitations are effectively isolated. This yields

Io(t) = [P Attsin(Q (t —r) —k2. r)+P'QR sin(D 't —ki. r)] (sinft )If, (2)
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where

f =4Q(jl+cos[ —,
' (Q+Q')r]cos[ —,

' (Q' —Q)z+(k2 —kl) r]j,

P and P' are the dipole moments for the Q and Q' transitions, QR and QR are the associated Rabi frequencies, and we
have assumed the ki —k2 = —(kl —k2) geometry. Setting Qa = QR and considering only the terms phased to radiate in
the directions k2+n(k2 —ki) (n & 0) we have 8=g„-iP„,where

cos(nit)sin(2iiRi{l+cosi —,
' (ii'+ ii)zkositl 'i )

).(t)-
2[1+cos[—,

' (Q'+ Q) r]cospj '

x(Psin[Q(t —r) —[k2+n(k2 —kl)] r —
2 n(Q' Q—)H

+P'si n[Q't —[kI+n(k2 —kl)] r —
—,
' n(Q' —Q) H). (3)

The angle brackets indicate an average over a variable p introduced in the definition of a 8 function used in the evalua-
tion of a series expansion of (sinft)/f. For fixed p the nth component, P„,of the induced dipole moment, P, is a
periodic function of (Q'+ Q)i with period 4x. However, on our averaging over p the moment P„becomes an odd or
even function of cos[ —,

' (Q+ Q') i] according as n is odd or even. As a consequence P2(t) (the output signal) is an even

function of (Q'+ Q)r with period 2x. In addition, the output signals have the same modulation whether one looks at
either Q or Q

'
separately or at both simultaneously.

The detailed behavior of f'„is readily obtained in the limit of either small or large pulse area QRt. Working first in

the small-angle limit and keeping only the lowest-order term radiating at Q we have

P„(t) ( —1)" (QRt)2"+'cos" i Psin' Q(t —r) —[k2+n(k2 —kl)] r n— (4)

The radiated intensity emitted into the nth order is thus

l„~ (P, 'P„)dt~[—,
' + —,

' cos((Q+Q')i)]". (5)

As the scattering order n increases, the scattering signal width, measured by the value of r for which I„decreases to —,',
decreases. No higher-frequency beat terms are directly observable; the sum-frequency beats dominate to all orders of
scattering.

In the limit of large pulse areas, QRt»1, Eq. (3) yields a sharpened modulation pattern which narrows with increas-
ing pulse area and is independent of n for moderate n We w. rite below a general expression for P„.The character of
the last expression is determined by the fact that the average over p in Eq. (3) is dominated by contributions near p =0
and ~z:

P(t) Psin[Q(t —r) —[k2+n(k2 —ki)] r —
—,
' n(Q' —Q)rj

0, for (Q'+Q)i=z, 3~,5x, . . . ,

[(—1)"/J8]Jo(2eQRt) for (Q'+ Q)i=0, 2z, 4z, . . . , 2m', . . . ,

X

g =n, e =2 sin [ —,
' (Q+ Q ') r] if m is even,

where
ri =0, e =2cos [—, (Q+ Q ')r] if m is odd,

o'+ n
8ÃQRt cos

sin(2QRt[l+cos[ —,
' (Q'+ Q)r]j ' —( ~ —,

' z))
jl+cos[ —,

' (Q'+ Q) i]j 'i

sin(2QRr {I—cosl-,' (Q'+ Q)z]j ' '+(n ~ —,
' )z)

[1 —cos[ —,
' (Q'+ Q)r]j '

i

where we use + or —according as cos[ —,
' (Q'+ Q)r] is greater or less than 0. The scattering half-width r is deter-

mined by the condition Jo(x) =1/J2 so that r„=—E2/[(Q'+ Q)QRt] independent of n For a pul. se area QRr = 10m the

1263



VOLUME 60, NUMBER 13 PHYSICAL REVIEW LETTERS 28 MARCH 1988

modulation spikes will narrow to 1/100 of the modula-
tion period. It is important to note that the amplitudes
of these peaks reach an asymptotic value and do not
disappear in the large-pulse-area limit. In the valleys
between the peaks the polarization tends to zero as
I/(QRt)'i. This result implies that sharp modulation
patterns will appear in experiments using cw lasers.

We have performed TDFWM experiments in Na va-

por. The experimental apparatus is shown in Fig. 1.
The dye-laser pulses were 7 ns in duration and were
tuned to 589.6 and 589.0 nm, the wavelengths of the
sodium 3SIg-3Pty2 and 3Stg2-3P3i2 transitions, respec-
tively. Each laser operated in four or five longitudinal
modes, yielding an overall laser bandwidth of 5 GHz.
The beam geometry kt —k2= —(kt —k2) was imposed;
since 0 and 0' are nearly equal this can be satisfied (to
within the beam divergence) by our making ktllk2 and
k2llkt. To accomplish this the dye-laser outputs were
split and recombined to provide two double-frequency
pulses in such a way that the 589.0-nm component was

delayed by r in one beam and the other frequency com-
ponent delayed by the same amount in the other beam.
Since the delays introduced in the two beams must be
stable compared to the period of the modulation, the rel-
ative positions of the beam splitter, corner cube, and
translating mirror shown in Fig. 1 had to be stable to
much better than a wavelength; also this portion of the
apparatus had to be enclosed to prevent the effect of air
currents changing the effective delay. The two double-
frequency beams were angled at 8= 0.3 mrad to overlap
spatially throughout a 100-mm-long sodium cell. A
pinhole in the focal plane of a 300-mm lens passed only
the TDFWM signal in the phase-matched k2+n(k2
—kt) direction. The signal was detected with an EG&6
model FND-100 photodiode and integrated over its full
7-ns duration. The TDFWM signal was monitored as
the relative delay was varied by the movement of mirror
Ml. The first-order signal presented in Fig. 2 as a func-

tion of i is a simple sinusoid as would be predicted in the
low-pulse-area limit of Eq. (5). The depth of modula-
tion is less than would be expected from theory because
of imperfect spatial overlap of the excitation pulses in

the sample and the difficulty in setting QIt = QR. All our
theoretical results yield the instantaneous TDFWM sig-
nal while we measure its integrated value. This would

matter if the experimental modulation pattern varied
with pulse area but we find no evidence for any such
variation. Our agreement with Eq. (5) is obtained even

though the excitation pulses were not in the
small-pulse-area limit. We have not observed any of the
predicted narrowing of the modulation signal that is ex-

pected with the multiple z excitations with which we

worked. Nor have we seen the narrowing of the peaks
and flattening of the valleys expected from Eq. (6) when

the sum-frequency signals are scattered into higher or-
ders (n) 1). We believe that both these experiments
are sensitive to vibrational instabilities in our apparatus
which average out the higher harmonic frequencies.

We eliminate the influence of vibrational instabilities
on modulation narrowing by performing the above exper-
iment using the difference-frequency geometry (kt —k2
=kt —k2) of Ref. 11. With this geometry and looking
at the first order, n =1, scattering signal we obtain (ex-
cept for the time scale) a simple sinusoidal pattern simi-
lar to that shown in Fig. 2. When we look at higher-
order scattering signals we find narrowed modulation
patterns with increasing narrowing as n increases. In
Fig. 3 we show the fourth-order, n=4, scattering signal
superimposed on the theoretical expectation given in Eq.
(5). The agreement is very good. Here, as in the sum-

frequency case, the excitation pulse areas were large.
Again the modulation pattern seemed insensitive to pulse
intensity although this was not explored systematically.

The observation of modulation narrowing at high
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FIG. 1. Schematic diagram of the experimental apparatus
used to generate TDFWM in the sum-frequency geometry (for
n I ). Mirror Ml is mounted on a precision translation stage
which provides for variable relative delays of up to 30 fs in in-

crements of ( 100 as. The delay was calibrated with a HeNe
interferometer. M2 is a corner cube which displaces each beam
so that it combines at the beam splitter with the beam of the
other frequency.
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FIG. 2. Typical set of data for the sum-frequency geometry:
signal intensity vs relative pulse delay. The Na vapor was held
at a temperature of 470 K.
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FIG. 3. Data taken in the difference-frequency geometry
showing the narrowing of the modulation in a high diffraction
order (n 4).

scattering order when we work with the difference-fre-
quency geometry supports our suspicion that vibrational
instabilities prevented their observation in the sum-

frequency mode. Our continued inability to observe
modulation narrowing at large excitation pulse area
remains unresolved. One possible explanation may lie in
the fact that our experiments have all been done with op-
tically thick samples whose optical densities were in the
range of 10 to 100. All our analysis assumes optically
thin samples. The optically thick regime is complicated
and we worked there in order to obtain signals which we
could differentiate from the noise.

Sum-frequency beat observation depends on the simul-
taneous excitation of two distinct transitions sharing a
common ground state. The foregoing analysis respects
this restriction and does not allow the limit 0' 0 with
both lasers tuned to the same transition. The expected
result in this degenerate case is that the modulation in
the TDFWM signal has the period of the optical fre-
quency 0, as in interferometry, and not 20. This is
most easily understood via the simple induced-grating
analysis by the inclusion of the (previously) moving-

grating component due to the product of the fields at 0
and O'. We took considerable care in looking for the
sum-frequency beat using a single laser whose output
was split to serve as a double source. Working this way
we saw only the resonant beats and not the sum-fre-
quency beats. We did not look at the higher-diffraction-

order signals which we calculate should narrow accord-
ing to I„~(—,

' + —,
' cos(Qr)j "+' similar to the case of

the sum-frequency beats.
In summary, the new phenomenon of sum-frequency

beats in a four-wave mixing experiment has been docu-
mented and its origin explained. By extension, the pres-
ence of beats in the TDFWM signal has been shown to
depend critically on the excitation beam geometry and to
provide spectroscopic information of a varied but well
defined character. As faster processes are studied
broader bandwidth excitations will be used which will in
turn couple multiple transitions, resulting in complex sig-
nal modulations. Sum- and difference-frequency geom-
etries may be separately employed to untangle confusing
spectroscopic details. Last, we note that the existence of
sum-frequency beats and their narrowing with scattering
order and excitation intensity may allow development of
more accurate position transducers.
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