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SU(3) gauge theory with a light isodoublet and a heavier strange quark is simulated on a 4x 83 lattice.
A first-order chiral-symmetry-restoring phase transition is found and metastable states are exhibited.
The gluon, isodoublet, and strange-quark contributions to the energy density are in the ratio 8:4:1 and
each internal energy jumps discontinuously at T,.
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Stochastic differential equations for lattice gauge
theory have yielded several algorithms which make first-
principles simulations of SU(3) gauge theories with light
dynamical fermions feasible on modern supercomputers.
These methods have been used to study the thermo-
dynamics of quantum chromodynamics and to show that
the theories with two, three, or four light quarks have
a first-order chiral-symmetry-restoring transition at T,
=100-200 MeV. ' In this Letter we present data for a
relatively realistic quark spectrum, an isodoublet of light
quarks and a heavier strange quark, and we display
metastable states at the transition. 5 We also measure
the gluonic, isodoublet, and strange-quark contributions
to the system's internal energy and find discontinuous

jumps in each internal energy which are in the ratio
5:4:1. This suggests that the strangeness content in a
quark-gluon plasma made in a heavy-ion collision should
be considerable and could provide a signal for the
creation of the plasma itself.

Before discussion of the results, consider some issues
of lattice technology and algorithms. We have simulated
small lattices, 4x8, where the temperature T is related
to the lattice spacing a and the temporal extent N, 4 by
aT=1/N, . Quark masses were chosen to be am„,g

0.0125 for the isodoublet and attt, 0.25 for the
strange quark. If T, =155 MeV, as favored by phenom-
enology as well as crude lattice spectrum calculations,
then the bare mass of the isodoublet is 7.75 MeV and the
bare mass of the strange quark is 155 MeV. These
masses are near the quark-mass estimates based on
current algebra. Therefore, aside from serious ques-
tions of assessing finite-lattice-spacing and finite-volume
effects, these simulations are quite realistic. There is no
need to consider mass extrapolations here as done in

most applications. We use staggered-lattice-fermion
methods, as in most studies of this subject, in order to
control mass renormalization in the interacting theory.

Our numerical results were obtained with a version of
the hybrid algorithm which propagates the gluon fields in
computer time t while accounting for the effects of
quarks through additional stochastic terms in the gluon
equation of motion. The gluon equation of motion is
discretized with basic time steps dt =0.01 and systematic
errors of O((dt) ) have been observed in the algorithm's
time averages. To accommodate an isodoublet of quarks
a random complex field ri„d is placed on the sites of the
lattice and an independent complex field ri, is also placed
on the lattice to simulate the effects of a strange quark.
Two tertns, each bilinear in ri„,d and ri„ then appear in
the gluon equation of motion, and the strength of each
term can be adjusted continuously so that an isodoublet
and a strange quark are simulated. The precise algo-
rithm for one random pseudofermion field ri was intro-
duced in Ref. 9. Those authors invented a finite-
differencing scheme which only required a single inver-
sion of the lattice Dirac operator for each sweep through
the entire lattice and which had O((dt) ) systematic er-
rors in long-time averages of observables. This algo-
rithm is better controlled and more efficient than its
predecessors which could also simulate an arbitrary
number of quarks. 'o We have generalized the algorithm
of Ref. 9 to a realistic quark spectrum by introducing
two pseudofermion stochastic fields ri„d and tb discussed
above and by generalizing its time-differencing scheme
to again keep systematic errors of time averages to
O((dt) ). The details of this procedure will be present-
ed elsewhere.

Now consider the results of our simulations. Our first
task was to find the chiral-symmetry-restoring transition
which separates the hadronic matter from the quark-
gluon-plasma phase. Our previous simulations with a
light isodoublet of quarks placed the critical coupling at
P, =6/g, =5.27-5.29, where metastable states were
displayed. " We expected to find a first-order transition
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in the theory with a realistic quark spectrum at a P,
shifted to a smaller value as a result of the additional
color screening caused by the strange quark. This effect
was observed. In Fig. 1 we show the time evolution of
the observables (pry), the chiral-order parameter of the
light isodoublet, the Wilson line (WL) and So, the aver-

age plaquette of Wilson's lattice gauge action, at P
=5.25. The two curves correspond to a hot and cold
start, and we see both configurations evolve into a hot,
quark-plasma state where (yy) is almost zero and WL is

relatively large. The total number of sweeps in Fig. 1 is
10000, and the observables were averaged into bins 100
sweeps wide. The time evolution of hot and cold starts at

P 5.20 are shown in Fig. 2 for 30000 sweeps and a
clear two-state signal was found. This is our best evi-
dence for the first-order character of the transition and
metastable states. It is hard to judge the degree of me-
tastability observed here except to note that for P chosen
away from P„ the time-correlation length in the algo-
rithm (the number of sweeps required to generate a sta-
tistically independent configuration) is typically 1QQ-300
sweeps, so that a 30000-sweep run would generate from
100 to 300 new gauge-field configurations. Finally, in

Fig. 3 we show a metastability search at P 5.15 and
find that the states evolve into a unique state of ordinary

0.8

hadronic matter where (yy) is large and WL is small.

Only 10000 sweeps were needed in Fig. 3.
In summary, SU(3) gauge theory with a realistic

quark spectrum has a first-order chiral transition on a
4x 83 lattice at a coupling P =5.20+' 0.05.

To understand the character of this transition we also
measured other observables such as the pressure and en-

ergy densities. The internal-energy densities were ex-
tracted from the simulation with standard tnethods ex-
tensively discussed and analyzed in Ref. 4 and by Engels
et al. ,

'2 and Heller and Karsch. '3 Measurements of the
pressure are quite delicate and will be deferred to anoth-
er article. The internal-energy measurements are shown

in Fig. 4 and in Table I which also includes the average
values and statistical errors (including time correlations)
for other observables at a wide range of P values. We
see from the table that just below p 5.20 the Wilson
line jumps discontinuously (from 0.127 to 0.489) as does

(glar) for the isodoublet (from 0.718 to 0.217). We note
from the figure that the three internal energies also jump
at JI1 5.20 as expected of a strong first-order transition.
Unfortunately the extraction of physically interesting
numbers from Fig. 4 requires some analysis and assump-

tions because of the presence of large finite-size effects
on small lattices. First we note that the dimensionless

energy densities elT are substantial fractions of the
Stefan-Boltzmann free-field internal energies on lattices

0.6

0.4

0.2

0 4p 80

0.8

04

0.6

Op
I

I 50

WL

p4

0.2

0 I t I

40 80

0.52

S

0.50

0.48
0.52

0.46
4p

FIG. 1. Time evolution of (yy), the Wilson line WL, and
the average plaquette So from hot and cold starts at P 5.25.
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FIG. 2. Same as Fig. I except P 5.20, and 30000 sweeps.
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FIG. 3. Same as Fig. 1 except P 5.15.

of this size. ' For the gluon internal energy, the ratio of
the internal energy shown in Fig. 4 at P slightly above
5.20 to the Stefan-Boltzmann value for a free lattice
Bose gas of sixteen degrees of freedom (eight for color,
times 2 for spin) is 2.20~0.20. For the isodoublet the
ratio is 0.85 ~ 0.15, and for the heavier strange quark it
is 0.48+ 0.06. Presumably this ratio is smaller for the
heavy quark because of its considerable mass, m, =T, .
Next we note that the free Bose gas on a 4&8 lattice
has an internal energy which exceeds the space-time con-
tinuum Stefan-Boltzmann value (eb/T =m /30) by a

factor of 1.40 as a result of finite-size effects, and a free-
quark gas exceeds its Stefan-Boltzman value (ef/T

7x2/60) by a factor of 1.86 for am =0.0125 and by a
factor of 1.69 for am 0.25. '4 If we correct for these
finite-size effects by dividing our data by these numerical
factors, we have

h, eg =(12.0+ 2.00)T,
he, ,d =(6.30+ 1.00)T,
he, (1.70~0.25)T .

This procedure for handling finite-size effects has proven
quantitively successful in pure-gauge-field simulations
where small-lattice results have been compared to large-
lattice results where finite-size corrections are quite
small. '2 However, the huge gluon-energy density ob-
served near T, (almost twice the Stefan-Boltzmann
value) should be confirmed on large lattices before Eq.
(1) is accepted. " Simulations of the four-flavor theory
on a 6x10' lattice also gave a similarly large gluon-
energy density near the transition. 2 It is interesting that
the strange-quark energy density just above T, is only

TABLE I. Average values of observables over long runs. So is the average plaquette, WL is the Wilson line, yyI is the chiral-
order parameter (V7y& for the light isodoublet, gab is the same for the strange quark, eg/T is the internal energy density for the
gluons, e„,d/T is for the isodoublet, and e,/T is for the strange quark.

10.000
6.000
5.397
5.301
5.278
5.248
5.200
5.193
5.143

Sp

0.214+ 0.001
0.387 ~ 0.001
0.452+ 0.002
0.468 ~ 0.002
0.472 ~ 0.003
0.478 ~ 0.002
0.489 + 0.001
0.517 ~ 0.002
0.534 ~ 0.002

WL

1.846+ 0.010
1.017 ~ 0.015
0.665 + 0.020
0.659+ 0.020
0.602 + 0.025
0.550 +' 0.015
0.489+ 0.018
0.127 ~ 0.022
0.064+ 0.012

0.028 ~ 0.001
0.045 + 0.001
0.073 + 0.003
0.112+0.005
0.112~ 0.008
0.131 + 0.008
0.217 ~ 0.025
0.718 ~ 0.037
0.865 + 0.025

0.525 ~ 0.001
0.737+ 0.001
0.845 w 0.001
0.951 + 0.005
0.995 + 0.010
0.975 ~ 0.008
1.016 ~ 0.006
l. 139+' 0.010
1.209 ~ 0.010

eg/T4

13.1+ 2.6
13.6 ~ 2.6
13.6 +' 0.26
16.9 ~ 2.6
15.6+ 2.8
18.7 ~ 1.5
16.6 ~ 3.1

1.8 ~ 3.0
0.0 +' 1.3

e.,d/T4

1 1.5 +' 0.3
1 1.2 + 2. 1

1 1.3 + 2.2
10.0+ 2. 1

11.4 ~ 2.0
9.9 +' 1.3
9.2 + 2.0
6.7 + 2.0
0.0+ 1.0

e,/T4

5.0+ 0.1

3.7 ~ 0.8
3.4 ~ 0.9
2.9 + 0.8
2.7 + 1.0
2.5 ~ 0.8
2.2+ 0.3
0.8 ~ 1.0
0.0 ~ 0.2
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half (roughly) the ideal-gas limit. This number is also
subject to finite-size uncertainties. However, this kine-
matic suppression may be real because the P =10.00
data in Table I correspond to very high T and, at
P=10.00m, lT, is roughly twice its value at P=5.20.
Ideally, one would like to hold the quark masses fixed in

physical units while changing T. This will be possible on
a large lattice where the renormalization-group trajec-
tories relating bare and physical quantities have been
well computed.

The major interest in Eq. (1) is that each internal en-

ergy is large and that they stand in the ratio 8:4:1 (ap-
proximately). Therefore, this lattice-gauge-theory simu-
lation predicts considerable ss production in heavy-ion

collisions. Models of the hadronization of the quark-
gluon plasma suggest that a relatively large fraction of ss
quarks should lead to considerable antihyperon produc-
tion. '5 Model builders and experimentalists should find

Eq. (1) provocative and useful in quark hadronization

studies of the evolution of the system's final state.
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