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Observation of the Meissner EH'ect in a Lattice Higgs Model
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The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte
Carlo techniques. In the Coulomb phase magnetic flux can flow through uniformly. The Higgs phase
splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the
magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity.
We present evidence for symmetry restoration in strong external fields.
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One of the most striking manifestations of supercon-
ductivity, and now a phenomenon posing a critical test
which all candidates for superconducting materials must
pass, is the observed anomalous behavior of magnetic
flux in the superconducting medium. Briefly summa-
rized, two different situations can arise when a supercon-
ductor is subjected to an external magnetic field. In the
first case, known as type I, the magnetic field decreases
exponentially on the surface of the sample and disap-
pears completely in the bulk. This is known as the

Meissner effect. In the other case, type II, magnetic flux
is totally expelled only up to a certain critical magnetic-
field strength 8, ~, beyond which the superconducting
medium allows for a partial penetration of magnetic
fields in the form of narrow vortices with quantized units
of flux. ' These different manifestations of superconduc-
tivity are all very well explained within the framework of
the phenomenological Ginzburg-Landau theory. 2'

From what appears to be an entirely different direc-
tion, one considers in relativistic quantum field theory
the action for the U(1) Higgs model in Euclidean space,

(3)
Z, p

where the sums run over plaquettes and lattice points, as indicated. This lattice action will then be treated by standard
Monte Carlo methods. The external electromagnetic field strength source has not been incorporated in Eq. (3). Its lat-
tice version is not unique, and we shall here choose it by the replacement

cosgp~ cos(Bp Bp ). (4)
We work on finite lattices of size L using periodic boundary conditions. We restrict ourselves to constttnt external
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S= d'xl .'F2, +(D„y-)'(D„y)+m'Iel'+~lel'- l F„F;,"~. (1)

Here X & 0, but m is allowed to take negative values, in

which case one has, at tree level, a "broken" or Higgs tions of motion, and which are the "relativistic" analogs

realization of the U(1) symmetry. In Eq. (1) we have of flux tubes in type-II superconductors.
introduced a coupling to an external electromagnetic In this Letter we shall present the results of a numeri-

field strength source F„'„":this source is kept fixed in the cal study of the full quantum theory associated with the

functional integral of the theory. Although this model is U(1) Higgs modeL This allows us to test the importance
studied in elementary-particle physics [because it is one of classical vortex solutions in the full dynamics of the

of the simplest models exhibiting the relativistic Higgs theory, and gives us the first opportunity to assess in a

mechanism, and because of its similarity to the standard completely nonperturbative manner earlier perturbative

SU(2) U(1) theory of electroweak interactions], it can predictions ' concerning the characteristics of this mod-

also be viewed as the Lorentz-invariant generalization of el in external electromagnetic fields.

the Ginzburg-Landau theory. Indeed, this model is In order to perform this numerical study, we latticize
known to possess topological excitations, Nielsen-Olesen the action (1) in a standard way, by making the follow-

vortices which are classical static solutions to the equa- ing substitutions:
1

s

a ' Ja'p„, (am, ) =(1 —2A. —8tc)/tc, A., =k/tcz, A„~ (e/a)I1„(x), p= 1/e2, (2)

whe« the subscript c denotes continuum quantities, a is the lattice spacing, and the notation otherwise is obvious. This
corresponds to a lattice action of the form

S=pg(1 —cosBp) —trg(p,*e "
p +„+H c )+XX(. l.yx I

' —I)'+Klux I
',
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electromagnetic fields 8~" =8„'"„—6„8„'"—6„8„'", nonzero
in, say, all 1-4 planes. This external field 8t',

" is chosen
such that there are lattice configurations 8„(x) with

8~ =8@(mod2n). One consequence of this is that
8~"= (2x/L )n,„, corresponding to 2rrn, „ total flux
through the lattice. We can construct such configura-
tions explicitly because of the compact nature of the
group. They contain Dirac sheets, the surfaces of pla-
quettes spanned by Dirac strings on the dual lattice, one
Dirac sheet for each 2x unit of flux. In a numerical
simulation they can constitute very long-lived metastable
states. This is so, because generally a monopole-
antimonopole pair needs to be created, loop around the
lattice, and then annihilate again, in order to "unwind" a
Dirac sheet and hence change the flux by 2z. 'o Al-
though a change to a configuration with diff'erent total
flux can occur within the usual Monte Carlo updating, it
is advantageous to propose from time to time global up-
dates that change the total flux by one unit and then ac-
cepting or rejecting them with a Metropolis criterion.

To start, we show in Fig. 1(a) the behavior of (p U„p)

in a "heating-cooling" exploration of the Coulomb-Higgs
phases at fixed P =2.50, A, -0.10, and n,„=p (i.e., with
no external field). A clear change of regime is seen to
occur at x, =0.153, in agreement with earlier localiza-
tions of the Coulomb-Higgs phase transition at these pa-
rameter values. " Next we turn on an external magnetic
field by choosing, e.g., n,„=3,and equilibrate well inside
the Coulomb phase, alternating local Monte Carlo
sweeps and global updates. After a short time an ap-
propriate number of global changes get accepted, so as to
make the total measured flux through 1-4 planes equal
to 6n, the flux of the externally applied field. This con-
forms with our intuition of the electromagnetic proper-
ties of the Coulomb phase. At the classical level it corre-
sponds to the solution

8„„(x)-8„'"„(x), iy„i'-0,
of the equations of motion associated with the action (3)
and (4).

Performing now a heating-cooling run as for n,„=0,
we obtain, for (p U„p), the behavior shown in Fig. 1(b).
In Fig. 2 we plot the corresponding expectation value of
plaquettes in the 1-4 planes. The three units of flux get
annihilated successively as a is increased and we go
deeper into the Higgs phase. This causes small jumps in

(p U„p) and bigger ones in the 1-4 plaquettes. Beyond
x =0.265 the total magnetic flux flowing through the lat-
tice is zero. In this part of the phase diagram the ap-
plied magnetic field is thus totally expelled. We identify
the total expulsion of magnetic flux as the relativistic
analog of the Meissner egect. This phase corresponds at
the classical level of this lattice model to the isotropic
solution
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Similarly, one would be tempted to take the stagewise
disappearance of magnetic flux between ir=0.24 and
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FIG. 1. Hysteresis runs on a 6 lattice at P 2.50 and
0.10. Plotted is the average link (p U„p) for increasing x

(circles) and for decreasing s (crosses). Each point is the
average over 150 iterations after 50 iterations for "thermaliza-
tion. " (a) No external field, n,„0,and (b) n„3.

p
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FIG. 2. The average plaquette E~ 4 (1 —cos(e&4)1 in the
1-4 planes, the planes with 8~"WO, for the same run as Fig.
1(b).
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0.265 as evidence for a "mixed, " type-II, phase of this

Higgs model. Indeed, as we go backwards from the
high-x phase three units of flux reappear successively in

roughly the same x. region, though showing a clear hys-
teresis, such that once we cross back into the Coulomb
phase the total flux penetrating the lattice again equals
6x. A much more direct way of characterizing this
type-II phase with localized topological excitations, vor-
tices, will be presented below.

Note that the critical x at which (p U„p) changes
from showing Coulomb to Higgs characteristics,
shifts slightly upward as an external electromagnetic
field is applied. (In Fig. I we only present results for
n,„0and n,„3;a clear monotonic increase is found
as n,„ is increased through the integers. '2) There are
thus parts of the Higgs phase which cease to show Higgs
behavior as the external field strength increases, and in-

stead switch to Coulomb behavior. From the supercon-
ducting analogy this is again as expected: It corresponds
to the destruction of the superconducting state as the
external magnetic field passes beyond a critical value

&c2
13

We can also study how, in the course of the simula-
tion, the system relaxes to equilibrium. In Fig. 3 we
show the "time evolution" obtained from starting with a
configuration with two units of flux, taken from what
was tentatively identified as the type-II region, as it
equilibrates in the high-x domain. The magnetic flux is

seen to disappear in steps over rather few Monte Carlo
iterations, and not surprisingly, the system equilibrates
to configurations containing no net flux. It is interesting
to note that these jumps in the flux occurred in the local
Monte Carlo updatings, and not as a result of global

P = 250 X=O. I

Aex =3, 6 lattiCe
4

changes being accepted. This brings further credence to
the belief that what we have identified as the type-II
phase indeed is populated with localized topological ex-
citations in the form of vortices. In contrast, when
equilibrating configurations with no flux in the Coulomb
phase in an external field, we find a much higher proba-
bility of flux changing as the result of global updates be-
ing accepted. This indicates that in the Coulomb phase
the magnetic flux is uniformly distributed.

To complete the above picture, we must make a clear
identification of the role played by lattice vortices in this
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FIG. 3. A typical run history showing the relaxation of a
configuration with two units of flux in the flux-expelling region.
Same quantity as shown in Fig. 2. The lattice size is again 6,
and the starting configuration (P 2.50, A, 0.10, and x 0.25)
is taken from the region we shall later establish to be of type
II. The stepwise disappearance of magnetic flux occurs here in
the local Monte Carlo updatings.

FIG. 4. An equilibrium configuration with one unit of flux
in the type-II Higgs phase is "cooled" to its nearest saddle-
point solution. The lattice is of size 6, and the parameters are

P 2.50, )I, 0.10, and x 0 20 Even on . thi. s rather coarse-
grained lattice, the field distributions show the clear charac-
teristics of a Nielsen-Olesen vortex. (a) The local magnetic-
flux density, and (b) the magnitude of the Higgs field

p (p p) 'i with its minimum value subtracted. Since p (arbi-
trarily) was chosen at one particular corner of each plaquette,
the minimum of p is not found exactly on top of the magnetic-
flux maximum.
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model. By translational invariance we can concentrate
on the two-dimensional subspace selected by the external
magnetic field, i.e., in our case the 1-4 planes. In the
continuum, Nielsen-Olesen vortices have quantized
magnetic flux that can be associated to the (integer) to-
pological charge of two-dimensional U(1) gauge fields

In terms of our angular variables e„(x) this can be tran-
scribed to the lattice as'4

e„„(x)=e„„(x)+2ttnp, (9)

with np c f —2, —1,0, 1,2j. On a 4D lattice the "topo-
logical charge,

" Eq. (9), counts the number of units of
magnetic flux through the plane considered.

If our interpretation of the intermediate-tc region as
being a type-II phase is correct, we should expect one
vortex configuration for each unit of magnetic flux pass-
ing through the lattice in that region. This can be tested
directly by a relaxation procedure, a method of stripping
quantum fluctuations off an equilibrium configuration by
"cooling" it to the nearest classical minimum of the ac-
tion. '2'5 The resulting gauge/Higgs-field distributions
for a typical type-II candidate configuration with one
unit of flux are shown in Fig. 4. A very clear example of
a Nielsen-Olesen vortex can be seen. In contrast, if we
cool a configuration with one unit of flux in the Coulomb
phase of this model, we end up with completely Pat field
distributions. As expected, the flux distribution is there,
apart from quantum fluctuations, uniform. Similarly, if
we cool from what is clearly identified as part of the
high-tr region in the Higgs phase, we find zero magnetic
flux through all plaquettes and a constant p*p distribu-
tion —yet another way of seeing the Meissner efl'ect.

Q= g e„„(x).
tr z, Jl, v

The sum runs over plaquettes in the 1-4 planes and the
reduced plaquette variables e„„(x) are forced to lie in

the interval ( —tr, tr] through the identification
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