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An investigation is presented of elasticity percolation in isotropic media with arbitrary elastic con-
stants. A model which combines the central-force potential energy and a triangular lattice with a large
unit cell allows us to vary the ratio between the two Lame coefficients. Results of numerical simulations
indicate that the critical properties of the percolation transition do strongly depend on the elastic con-
stants.
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Percolation ideas' have been applied to many different
physical phenomena. In particular, the elastic proper-
ties of random networks near the percolation transition
have attracted a great deal of interest in recent years.
It was first suggested by de Gennes that in the special
case of a nonrotationally invariant isotropic force con-
stant, elasticity percolation was equivalent to conductivi-

ty percolation. More recently it was proposed that, in-

stead, the rotationally invariant central-force model be-
longs to a different universality class. All these investi-
gations focused on the properties derived from the as-
sumption of different forms for the potential energy
without searching for a link with the macroscopic prop-
erties of the continuum elastic media. Nonetheless, it is

quite clear that a given model for the potential energy
univocally corresponds to a medium with a given set of
elastic constants.

In this paper we adopt an entirely new point of view

and seek a relationship between the critical properties of
the percolation transition in isotropic elastic media, and
their elastic constants. The potential energy was de-
scribed by means of the rotationally invariant central-
force Hamiltonian. In order to obtain the correct
isotropic properties in the continuum limit, a triangular
lattice was chosen; on the other hand, changing the unit
cell of this lattice to 43 x J3 allowed us to vary continu-
ously the elastic constants of the medium. The results
indicate that the central-force model does not constitute
by itself a universality class; instead what matter, as far
as the percolation transition is concerned, are the elastic
constants of the medium.

The equilibrium equations to be satisfied in continuum
elasticity ' are

(A+It)8 QIBJUI +p QJBJ v' 0, (1)

where X and It are the two Lame coefficients, v(r) is the
displacement field, and rl; is the partial derivative with
respect to the ith component of r. %e describe the elas-
tic potential energy by means of the central-force Hamil-

tonian

H = —,
' g;,k;, [(v; —v, ) i;, ] ', (2)

where i;~ is a unit vector between sites i and j, and the
force constants k;~ are finite with probability p and van-
ish with probability 1 —p. To simulate the two Lame
coefficients in Eq. (1), we choose a triangular lattice with

unit cell J3XJ3; more specifically, we use two force
constants, one associated with the bonds which lie in a
superimposed honeycomb lattice, k„and the other, kb,
with the rest of the bonds (Fig. 1). In the continuum
limit the relation between the two Lame coefficients and
those two force constants is given by

4x +3x+2 ka

p 8x+1 '
kb

(3)

This result was obtained by our calculating the ratio be-
tween the longitudinal stretching and transverse com-
pression of the system under an applied uniaxial tension.
This procedure allows us to vary k/p continuously from
0.9 to infinity.

Numerical simulations were carried out on hexagons
of sides in the range 10-45 (in units of bond length)

k,
kb

FIG. l. The 43 X J3 reconstruction of the triangular lattice
utilized in this work.
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8 =Bpp/[1+ (X/p+ 1)(1 —p)l (4)

where I —p is the fraction of empty area and Bp is the
bulk modulus of the perfect elastic medium. Figure 2
shows the numerical results for a hexagon of side 30 and
the analytical curves given by Eq. (4), for two values of

containing 331-6211 nodes, respectively. The bulk mod-

ulus was calculated directly from the total elastic energy
of the system in the following way. The boundary nodes
were given fixed displacements normal to the boundary
corresponding to a macroscopic strain. Then the interior
nodes were allowed to relax until the equilibrium equa-
tions (1) in its discretized version were satisfied. Equa-
tions (1) were solved iteratively. The iteration process
was stopped either after a fixed number of iterations or
when the logarithmic derivative of the total elastic ener-

gy of the system was lower than a given value (in our
calculations these were 600 and 10 6, respectively).
Logarithmic derivatives of the elastic energy were always
lower than 5 x 10 and the maximum force on the inte-
rior nodes less than 0.005 times the initial force on the
boundary nodes. In order to speed up computations, the
iteration process for a given p was started from the re-
laxed structure obtained for the preceding (larger) p for
a given realization. The procedure was repeated for a
number of realizations which varied with the size of the
hexagon (around 30 for the smaller and 10 for the larger
one). More details on our numerical procedures will be
given in a future publication.

To illustrate the suitability of the present model to de-

scribe the properties of the continuum, the bulk modulus
of a hexagonal ring as a function of the fraction of bro-
ken bonds was calculated and compared to the analytical
result obtained in the case of a circular ring, namely,

3,/p. The agreement is very good, indicating that the
combination of the reconstructed triangular lattice
shown in Fig. 1 and the potential energy of Eq. (2)
correctly describes the properties of the continuum elas-
tic media.

The critical properties of the percolation transition
were investigated by means of the generalized phenome-
nological renormalization method. " ' This method al-
lows a very accurate determination of the percolation
threshold p, and the ratio b =f/v„where f is the per-
colation exponent and v, the correlation length exponent;
the latter could also be determined within the same
scheme although with much less accuracy'2 and will not
be calculated in this work. As a detailed description of
the method can be found elsewhere, " ' here we shall

only comment on the points pertinent to the present dis-
cussion. In analogy with phenomenological renormaliza-
tion, the following mapping is inferred':

8,(p) =(LIL. ') '8, .(p'), (5)

where L (or L') is the linear dimension of the finite net-
work. Following Barber and Selke, we define'

(LL (p) In[BL, (p)/BL (p)1/In(L/L').

Then the intersection of gLL (p) and (zL-(p) approxi-
mately gives (p, ,b). The tnethod has proved to be very
efficient in the determination of both quantities. ' '

The above procedure is illustrated in Figs. 3 and 4.
Figure 3 shows the bulk modulus as a function of p for
X/p 5 and hexagons of sides 10 and 20. Concerning
Feng and Sen's calculations of p, and f directly from
curves similar to those shown in Fig. 3, two comments
are in order. (i) It is very difficult to decide the size
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FIG. 2. Bulk modulus vs p for a circular ring (continuous
lines) and a hexagonal ring (discrete values) as given by Eq.
(4) and numerical simulations, respectively, for X/p 1 and 5.

P
FIG. 3. Bulk modulus vs p for random networks. Simula-

tions were carried out on hexagons of sides 10 and 20 (in units
of bond length). k/p 5.
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0, L' =45

0, L'=30

TABLE I. Results for the percolation threshold and f/v, ob-
tained in this work for three values of k/p. Percolation thresh-
olds obtained with Eq. (7) are also given.
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FIG. 4. Plot of the function gii, -ln(BL/Bi )/ln(L/L')
against p, for the case of k/p 10.

beyond which the finite network behaves as an infinite
system. (ii) The estimation of p, from these curves is
very inaccurate as it requires a parallel determination of
the exponent f. The analysis of Feng and Sen suffers
from those two drawbacks. The calculation of p,, and
f/v, by means of Eq. (6) is illustrated in Fig. 4. There is
noted a distinct intersection of the two curves corre-
sponding to the /zan (p) obtained with the results for the
three largest sizes here considered.

Our results for the percolation threshold and 6 are re-
ported in Table I. First, we comment on the case A/p 1

already considered by other authors. We note that our
result for the percolation threshold p, is in very good
agreement with the most accurate estimate reported up
to now, ' i.e., p,,=0.65. On the other hand, our result
for f/v, (1.1) is also consistent with that of Ref. 8,
namely, 1.35+ 0.25.

The results for two additional values of A,/p are also
given in Table I. First, we note that p, increases with
A/p. This is consistent with the fact that as p tends to
zero the percolation threshold should tend to unity. On
the other hand, these results can be qualitatively under-
stood in terms of a model of noninteracting voids. Extra-
polating the small-p limit in Eq. (4) to the whole range
of p, we obtain

(7)

The overall dependence of p, on k/p is well described
by this formula. On the other hand, a self-consistent
effective-medium approximation can be developed along
this line. This theory, in its most straightforward ver-
sion, predicts a value of p, independent of k/p, equal to
3 This result is not confirmed by our numerical calcu-

lations. We ascribe the fact that Eq. (7) describes better

our findings to the rather small fraction of voids required
to reach the percolation threshold. While to obtain Eq.
(7) the starting point is the perfect homogeneous system,
a self-consistent theory assumes that the properties of
the system are close to those of a homogeneous system
with the final elastic constants. The neglect of spatial
correlations implicit in this approach seems to be a more
serious drawback than the assumption of no interactions
between voids. This point is further confirmed by our
noting that the agreement between the numerical results
and Eq. (7) is better for A./p =1. It is easy to check that
the distribution of elastic energy around a spherical void
behaves like F(r) —[I+(1+X/p)R /r j where R is the
radius of the hole. Thus, the decay of the derivative of
this quantity is faster for small values of X/p, leading
to a weaker interaction between voids. Finally, when

X/p ee, both Eq. (7) and the numerical simulations
suggest that the percolation threshold is reached for a
very small fraction of broken bonds. This is consistent
with the fact that, in this case the lattice offers no resis-
tance to shear deformations. As voids induce such shear
stresses, even under homogeneous pressures, the lattice
has a strong tendency to collapse.

Our results for f/v, are also given in Table I. A very
strong dependence of b on the elastic constants is noted:
For A,/p 10 the ratio f/v, is reduced by a factor of =7
with respect to the case X/p =1 previously considered by
other authors. The strong dependence of the critical
properties of the percolation transition on the elastic con-
stants of the continuum medium suggests that the cen-
tral-force model does not belong to a new universality
class as suggested elsewhere. 5

Summarizing, in this paper we have presented a model
which, by combining the central-force Hamiltonian and
a triangular lattice with unit cell J3x J3, has allowed us
to investigate the critical properties of elasticity percola-
tion as a function of the elastic components of the con-
tinuum medium. Our results indicate that the critical
properties do strongly depend on the elastic constants.
This conclusion could have not been anticipated from
previous analysis of elasticity percolation, and opens new
possibilities in the field. Here we mention some ques-
tions for future work: (i) calculation of the correlation
length exponent, (ii) study of models capable of describ-
ing media with A,/p varying in a wider range (values
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below 0.9), and (iii) investigation of whether or not the
results depend on the form of the potential energy; this
could be done by consideration of different expressions
for the potential energy corresponding to media with
identical elastic constants.
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