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High-Energy Symmetries of String Theory
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By means of a recent analysis of the high-energy limit of string scattering, linear relations between
string-scattering amplitudes are derived. These are shown to hold order by order in perturbation theory.
If one assumes that they hold for the full theory, they suggest the existence of an enormous string-
broken symmetry which is restored at high energies. Some speculations as to the nature of this symme-

try are presented.

PACS numbers: 11.17.+y

It is often the case that spontaneously broken sym-
metries of a physical theory are hard to recognize at low

energy, but become evident in the high-energy behavior
of the theory. Thus, the broken SU(2) SU(1) symmetry
of the electroweak interactions can be seen by examina-
tion of weak scattering amplitudes at energies high
enough that the W and Zo masses can be neglected.
String theory surely possesses a very rich symmetry, as
suggested by its incredible degree of uniqueness; howev-

er, this symmetry is little understood. Presumably this is
because most of the string symmetry is spontaneously
broken in the known ground states, leaving only the fa-
miliar gauge symmetries unbroken and manifest. Per-
haps all the string states are gauge particles, but most
are massive because of spontaneous symmetry breaking.
Perhaps at very high energies, so high that the Planck
mass (which in string theory is proportional to the string
tension T I/za') can be neglected, the full symmetry of
string theory is restored. In this limit, of course, all par-
ticles have vanishing mass, P (1/a') x integer 0.
An even wilder speculation is that the Planck mass itself
arises dynamically from a more symmetric scale-in-
variant phase of string theory. Perhaps we can discover
this symmetry (if it exists) by studying string theory in

the high-energy (or a' ~) limit. In particular, if at
high energies a larger symmetry is restored there should
then exist linear relations between the scattering ampli-
tudes that should be valid order by order in perturbation
theory. If so these might be discoverable by our analyz-
ing the high-energy behavior of the theory perturbative-
ly.

This limit of string theory, which can be thought of as
either the high-energy limit or as the limit where
Mpl, „,k —1/a' 0, is of great interest. It is the opposite
of the low-energy limit, a' 0, where strings behave as
particles and the dynamics can be represented by a local

effective field theory. As stressed in the work of Gross
and Mende, ' the high-energy behavior of strings is very
stringy and cannot be reproduced by an effective local-
field theory. In ordinary general relativity this limit,
which is the same as the strong-coupling limit of gravity,
GN, &,„cL1/Mp~, „,k, is difficult to discuss since the theory
breaks down in the ultraviolet. String theory does not
necessarily suffer from this limitation. Finding this en-
larged symmetry should help us to understand the struc-
ture of string physics at high energies. This is not just an
academic issue; it is also crucial if we are to understand
the Planckian-scale dynamics that determines the nature
of the string ground state.

Recently, the high-energy behavior of string scattering
was studied by saddle-point techniques. ' It was shown
that the sums over Riemann surfaces that define string
perturbation theory were dominated by particular sur-
faces in the limit a' ~. The dominant surfaces were
identified and the leading behavior of the tachyonic
scattering amplitude was calculated. In this paper I
shall use these results to explore for new symmetries that
might be revealed at high energy. I show that there ex-
ist an inftnite number of linear relations between the
scattering amplitudes of diferent string states that are
valid order by order in perturbation theory as a'
It is then not unreasonable to assume that these relations
are true properties of the a'~ limit of string theory,
even though perturbation theory diverges badly. If so,
they are the consequence of an infinite-parameter sym-

metry group which is restored as an exact symmetry at
high energies. This symmetry is so powerful as to deter-
mine the scattering amplitudes of all the infinite number
of string states in terms of, say, the dilaton scattering
amplitudes.

First, let us recall the analysis of Ref. 1. Consider the
G loop contribution to a string scattering amplitude,
which is given by

Ao(P;) = SX"exp
to g)g I

„d gvgg'sB, X"BsX„QV;(X/', P;),
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where V~(X;,P;) is the vertex operator for particle i
which carries momentum P;,

V(P;) = d g; Jg exp[ia'P; X(g;)]V(X"(g;),P;).

V(X"((;),P; ), depends on the particular string state and

its polarization, but is a polynomial in a'. The integral is

over all compact surfaces of genus G. In the critical
dimension it is invariant under the group of diffeo-
morphisms and Weyl rescalings of the metric, which is

why we have divided by JV, the volume of this group.
It can then be reduced to an integral over the finite-
dimensional moduli space Afo of Riemann surfaces of
genus G parametrized by 3(G —1) complex moduli m

with punctures at the positions g; at which the vertex
operators are located.

Here we are considering the bosonic string; however,
similar results will hold for the super and heterotic string
theories. I have adopted an unusual normalization for
the string coordinate X (related to the more common X„
by X=a'X„), so as to make it clear that the a' ~ lim-

it is, order by order in perturbation theory, equivalent to
the semiclassical limit of first-quantized string theory.
Thus the above integral is dominated in the limit of
infinite a by a saddle point in X, m;, and (;. This is a
classical solution of the string equations of motion,
m;=m;, g; g;, and

X"(g) =X,")(g) i g; PfG (g, (-;)+O(1/a'),
Jl

where G- ((,g;) is the Green's function (the inverse La-
placian) on the genus-G Riemann surface with unit
sources at g;. Consequently

Ao(P;) g
+ I o(P;,m;, g;)ff;V;((X,"),( ),P )+O(1/a'),

g) V,,(X,"),Pj)
AG (P') „Ao(P; ) [I +O(a ') ]~

IIj Vbg cl~Pj
(4)

This is an amusing relation, but one of little use by it-
self since it only relates amplitudes at a given order of
perturbation theory. Fortunately, for the dominant sad-
dle points discussed in Ref. 1, the dependence of X",

~ on
the order of perturbation theory G is trivial. I recall that
in Ref. 1 it was argued that the saddle-point surfaces
that dominate elastic scattering at high energies were
the Riem ann surfaces of the algebraic curve y
=Q;-~(z —a;) ', which describe an ¹heeted cover of
the Riemann sphere (as long as the L; are relatively
prime to N) of genus G=N —1. The positions of the
branch points, a;, coincide with the positions of the punc-

where I g contains an exponential factor which arises
from evaluating the integrand at the saddle point (in any
string theory, for a four-particle scattering amplitude
whose kinematical variables are s (P~+Pz) = (P3
+P4), t (P(+P3) =(P2+P4), p =(P(+P4) (P2
+P3), this was determined to be

exp[ —[a'/4(G+ 1)] (s lns+ t lnt+ u lnu )j

(Ref. 1)), as well as the measure of moduli space evalu-
ated at the saddle-point surface and the inverse deter-
minant of the matrix of second derivatives of the ex-
ponential at the saddle point.

The important fact to notice is that the only factor in
(3) that depends on the nature of the particles being
scat tered is Q;V;! Therefore, if we can determine the
saddle-point surface (in other words the m;, g;, and X,"~,

which only depend on the number of particles participat-
ing in the scattering but not on their quantum numbers),
then we can immediately deduce a linear relation be-
tween any two scattering amplitudes involving the same
number of particles with the same momenta (for exam-
ple, the scattering of particles a; and particles b;),

X,",(z) =—g PP!n~z —a; ~+O(I/a').
Ng-)

(5)

It is a remarkable fact that the saddle-point surfaces
are all identical, except for the scale (which goes as

1/N), for all the saddle points in each order of perturba-
tion theory. Consequently, the only genus dependence
present in Eq. (4) comes from the I/N's in the X,"~'s

present in the V s, namely V(X",~,P) -V(X",~'/N, P).
If all the V,,'s were homogeneous functions of the X"'s
of the same degree, then (4) would be independent of G.
Unfortunately, this is not the case, except for the vertex
operators of the simplest string states. However, the fac-
tors of 1/N can be replaced by derivatives with respect
to the momenta. This is because the operator S—:(2/
a'S)g; P; I)/8P; brings down a factor of N, when acting
on e ' j, where S=slns+tlnt+ulnu. When acting
on the other polynomial terms in the momenta 2) is of
order 1/a'. Therefore we can replace the 1/N by S.
Thus, V (X,"P,P) V (X",~'S,P), when acting on

AIv —
~ (P; ), to leading order 1/a'.

Using this trick we can write down linear relations be-
tween any two four-particle scattering amplitudes:

Q; Vb, (X,",n, P;)A"(P;).
=Q; V,, (X", J),P; )Ag'(P; ) [1+0(a')],

which are independent of G! I can now argue that this
relation should hold for the complete amplitude, in the
limit a ~, since it holds order by order in perturba-

tures. Furthermore, the SL(2,C)-invariant cross ratio
of the branch points was determined' to be X (a4

az) (a j a 3)/(a4 a3 ) (a j az) t/s. All of these
surfaces (including those with different L;) give rise to
the same exponential factor in (3), all of them have the
same Green's function, and for all of them
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tion theory. This is a traditional method of proving the
properties of quantum field theory (such as the oper-
ator-product expansion, symmetries, the renormalization

group, etc.) by establishing their validity order by order
in perturbation theory. It is not, however, without

dangers, especially in the proof of asymptotic theorems.
Nonetheless, we shall make this assumption. Then, since
as a' all the particles become massless, we can re-
late the scattering amplitudes for any set of particles.
Indeed all the four-particle scattering amplitudes can be
expressed in terms of say, the four-tachyon amplitude

+tachyon(Pi ).

~.,(P ) -II V.,(X."1&,P;)& .,h„„(P;)[1+0(a')].

(7)

This is a remarkable result, which hints at a very large

and unusual symmetry of string theory that might be re-
stored at high energies. Let us examine the simplest of
these relations. Consider the scattering of the massless
excitations of the closed, type-II, bosonic string. The
physical states are given by the vertex operators
V(X",P) =e""8X"8X", where P"e"'=e"'P'=0. The
symmetric traceless part of e"" describes the graviton,
the antisymmetric piece describes the antisymmetric ten-
sor, and the trace describes the dilaton. In this nonsu-
persymmetric theory there is no a priori relation between
the amplitudes of these different particles. However, the
above relations will relate them all to each other. Since
the vertices are all homogeneous of degree two in X", we
can dispense with the derivatives. We need only evaluate
V for each particle by plugging (5) into V. Upon doing
this we note that the potential divergence when X" is
taken at the puncture is removed by the physical-state
conditions P"e""(P)=e""(P)P"=0. Using these rela-
tions we find that

»"(~i) -~X"(~1) Q"=tPV' (Pi-P4)+PM ~ (P, -P,)+P;P, . (P, -P, )],
and thus that

V,(P, ) -Q"e""(P,)Q".

From this equation we can deduce the following.
First, the amplitudes involving the antisymmetric tensor
vanish relative to the others, as well as those involving
polarizations of the graviton outside of the plane of
scattering. Thus in the limit a' oo the amplitudes of
all the massless particles vanish, with the exception of
the dilaton and the gravitons whose polarizations lie in
plane of scattering. It is easy to calculate V for these,
with the result that the nonvanishing amplitudes are all
equal up to a momentum-independent constant. What
symmetry could give rise to such relations?

Similar relations could surely be derived for the super-
string and could also be extended to multiparticle ampli-
tudes since most of the above story goes through for
these. If this is the case then the full S matrix of the
a' oo limit of string theory (say for the heterotic
string) could be expressed in terms of the dilaton S ma-
trix. One could even contemplate constructing explicitly
the a' oo limit of the theory by plugging these rela-
tions into the unitarity equations (which according to the
arguments of Ref. 1 might be valid for the limit a'~ ,
since the high-energy behavior is dominated by ampli-
tudes in which all internal momentum transfers and en-
ergies are large) and using these to solve for the dilaton
amplitudes and thereby the full a'=~ theory. This ap-
proach is made quite complicated by the accumulation of
an infinite number of particles at zero mass as a'

The above relations connect amplitudes involving par-
ticles of different and arbitrarily high spin. If they are
generated by a symmetry transformation of the a'
theory it must be one whose conserved charges have arbi-
trarily high spin. This would contradict the Coleman-

Mandula theorem, 5 which limits the maximal spin of a
conserved charge to be l. Perhaps the Coleman-
Mandula theorem is invalid for the a' ~ limit of
string theory. One of the assumptions of the theorem is
the particle finiteness -assumption, which states that for
any finite M there are only a finite number of particles
with mass less than M. For a'=oo there are an infinite
number of massless particles, in which case the theorem
need not apply.

It might also be the case that the Coleman-Mandula
theorem is valid. The theorem states that if there exist
higher-spin conserved charges then the S matrix equals
the identity and the theory is trivial. This is because a
higher-spin conserved charge, Q„, „,„, , would take
values equal to P; P„',P'„,P'„, . . . on asymptotic states of
spinless particles of momenta P ',P,P3, . . . . The only
way this can be conserved is if all the individual momen-
ta are conserved, i.e., only forward and backward
scattering is allowed. Then, if one accepts the usual
analyticity of scattering amplitudes, no scattering at all
is allowed (in more than two space-time dimensions).
Perhaps this theorem is valid, the higher-spin symmetries
do exist, and consequently the scattering amplitudes do
all vanish as a'~ . This is certainly suggested by the
exponential falloff' of the scattering amplitudes, order by
order in perturbation theory, as in (3), as a' ~. In
this case the relations (6), although of the form 0/0,
would still have much content.

It should be evident to the reader that the author has
little idea as to the specific nature of these purported
symmetries. If the above relations between the S-matrix
elements are true, then they presumably do contain
enough information for us to deduce the symmetry. One
might, for example, attempt to construct an effective
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Lagrangean, for some of the modes of the string, con-
sistent with these relations and explore its symmetries.
However, this might not be such an easy task given that
the relations hint at a very unfamiliar and new kind of
symmetry. Nonetheless I felt it useful to present these
speculations, since any advance in the understanding of
physics at the Planck length is of critical importance.
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