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An infinite number of ways are developed for representing a function in terms of the eigenfunctions of
a three-dimensional scattering problem and simple known auxiliary functions. The utility of the new ex-
pansions, which generalize both the Fourier and Radon transforms, is shown by derivation of a new rep-
resentation of the scatterer for the near- (far-) field inverse problem. Further, the scattering amplitude
and potential are shown to be a generalized Fourier-transform pair.
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In many problems of theoretical physics, one is in-
terested in the eigenfunctions of a differential operator.
It is often useful to express an arbitrary function in
terms of its projections onto these eigenfunctions. Prob-
ably the best-known example of this is the Fourier trans-
form and its inverse. In this case, the differential opera-
tor is the Laplacian and the eigenfunctions are plane
waves. Another example occurs in quantum scattering
theory, which relies heavily on expansions in terms of the
eigenfunctions of Schrédinger’s equation. !

Eigenfunction expansions are also useful in work on
the inverse scattering problem, which is the problem of
recovering properties of a scatterer from scattering data.
In the case of quantum inverse scattering, many investi-
gators have used expansions in eigenfunctions of the
Schrodinger operator.? In contrast, for classical wave
theory (acoustics, electromagnetics, and elastodynamics)
in three dimensions, eigenfunction expansions for the
corresponding scattering operators have not been used.
Researchers in inverse scattering have instead used the
Fourier transform, which has led to their obtaining re-
sults that are only approximate. For example, it has
been shown that in the case of weak scattering, the ap-
proximate (Born) scattering amplitude is a Fourier
transform of the potential.3

In this paper, we consider a general wave equation
that, in various special cases, reduces to the variable-
velocity wave equation, the acoustic equation, and the
Schrédinger equation. For this general wave equation,
we exhibit an eigenfunction expansion. This eigenfunc-
tion expansion contains an auxiliary function, which,
within certain constraints, can be chosen arbitrarily.
Thus, we actually obtain an infinite number of related
eigenfunction expansions for each wave equation. We
show how to recover expansions for the Schrédinger,
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wave, and acoustic equations as special cases. These ex-
pansions lead to new generalizations of the Fourier and
Radon transforms.* Finally, we show how to use the
eigenfunction expansions in inverse scattering. In partic-
ular, we (1) derive new representations of the potential
in terms of scattering data, and (2) show that the exact
scattering amplitude is a generalized Fourier transform
of the potential.
We consider first the acoustic equation®

(V2= (Vp/p)-V+ o’ ~2(x)]p(w,x) =0. (1)

This equation governs wave propagation in an inhomo-
geneous fluid; here x is a coordinate in R3 @, which
denotes an angular frequency, is a real nonnegative sca-
lar; p is the excess pressure; p, the density, and c, the lo-
cal sound speed, are bounded positive functions that are
bounded away from zero. We transform (1) into a more
tractable equation by means of the transformation
v=p~ 1 2p. We thus obtain an equation of the form

IV +0?—V(x)o?—qx)]ly(w,x) =0. )

The solution y(w,x) we call the wave field. We assume
that (1) ¥ and q are bounded and have compact support;
(2) V and g have two continuous derivatives; (3) Eq. (2)
has no bound states (i.e., solutions with rapid spatial fall-
off); and (4) g is nonnegative. These conditions are
sufficient for our results but can surely be relaxed. We
note that V is related to the local sound speed ¢ by
V=1—c "2 Equation (2) is not only a useful form of
(1), but it also reduces to the Schrédinger equation in
the special case V' =0.

We will be interested in scattering solutions that cor-
respond to an incident plane wave, exp(iwé- x), where &
is a unit vector denoting the direction of incidence. Two
useful solutions are defined by the Lippmann-Schwinger
equation!>;

(3)
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where point source at y,

The causal properties® of the Green’s functions are
essential to our derivation. These are most easily de-
We will also need the Green’s functions, which are scribed in terms of the “time-domain” Fourier transform
defined by

V+ 02—V (x) —¢(x)1G * (0,x,y)

—<3(e 4 With our assumptions on V(x) and g(x), it can be
Fx=y), @ shown’ that Gg(t,x,y)=0 for t<|x—yl|/cm and

6
Git (o,x,y)=—zr|x—y|) lexp(Fio|x—y]|).

G *(1,x,y)=Qxn) _lf_mda)ei“”G o,xy). ()

together with outgoing boundary conditions (plus) or in- G (t,x,y)=0, t> — |[x—y|/cm. Here c=suplc(x)]
coming boundary conditions (minus). The quantity is an upper bound for the velocity of wave propagation.
G *(w,x,y) can be thought of as the response at x to a | Finally, we will need the scattering amplitude. It can

be measured from the far field of y *:

v (0,8,x) =expliné-x)+A4(w,e',8) expliox)x ~'+olx ~1). 6)
Here x =|x| and é =xx ~'. An explicit form for the scattering amplitude is obtained by expansion of the Lippmann-
Schwinger equation for large x:

Alw,e',e)=—(4r)"~ fd yexp(—iwe y) oV (y)+q9(y)lyt(0,é,y). @)

We note that A satisfies the reciprocity relation! A(w,é',é) =A(w, —&,—¢&'). Incidentally, the scattering amplitude
can also be obtained from “near-field” measurements.®

This completes our review of scattering theory; next we sketch a derivation of our basic result. The derivation starts
with a formula obtained by Cheney et al.® by a Green’s-theorem argument '°:

G Y (w,x,y) — G ~(w,x,y) -f(,m [G +(cu,z,y)f;G “(w,2,x) =G _(w,z,x):,;%G *(w,z,y) |dS:, 8)

where 90 is a smooth surface enclosing the support of ¥ and ¢, and n is the outer unit normal. Here x and y are either
both inside @ or both outside. Henceforth we will denote the right-hand side of (8) by J(w,x,y). Next we take the
Fourler transform of (8) to the time domain using (5). In doing this, we obtain G* =G~ on the left- hand side. But
Gt and G~ have disjoint supports: If 7 is any number whose magmtude is less than |x—y/|/cm, Gt(,x ,y) =0 for
¢t <7 and G(t,x,y) =0 for ¢t > z. Thus, if # is greater than 7, G *(z,x,y) is equal to the Fourier transform of the right-
hand side of (8) multiplied by the Heaviside function H(z — 7). We then take the Fourier transform back to the fre-
quency domain, calculating the result at @ =0. We thus have

G Oxy) =0~ _atf  dwexp(~iot) HG—~ I (w,x,y). ©

We make the change of variables s = — 7; this brings out a factor of exp(—iwz). The s integral is then merely the
Fourier transform of the Heaviside function, namely P(—i/w) +z6(w), P meaning principal value. The term contain-
ing the & function vanishes because J(0,x,y) vanishes, since x and y are either both inside @ or both outside. Finally,
we let V2 —g operate on the resulting equation. This gives us our main result:

B ax=y) =) "=V 41 [ _do (o) e * P (0,x,y), (10)

where — |x—y|/cm<t=< |x—y|/cm. Equation (10) and formulas based on it should be interpreted in distribution
sense; in (10) the principal value is not needed because J vanishes at @ =0. These matters are given a careful detailed
treatment elsewhere. !!

Equation (10) has a number of consequences, which correspond to different choices of 7 and different configurations
of x, y, and Q. For example, if dQ is taken to infinity, one can use the fact'® that for large |z|, G * (w,z,x) is
asymptotic to

—@r|z|) lexp(xiw|z|)y * (0, F2,x),

where 2=z/|z|. Equation (10) becomes
s(x—y)=(1673) _‘[—V2+q(x)]f_mdweiw'("’)L2d22 v (0,2,x)y  *(0,2y), (1)
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where S? is the unit sphere and the asterisk denotes
complex conjugate. In obtaining (11) we have used the
relations vt (—w, —2,x) =y " (0,%,x) and y* (- 0,2,
x) =y *(0,2,x).

Equations (10) and (11) substantially generalize the
eigenfunction expansions which are currently used for
Schrodinger’s equation, for the wave equation, and for
the acoustic equation. In particular, Eq. (11) is a gen-
eralization of the inversion formula for the Fourier trans-
form. This can be seen by an our taking V=g =1=0.
Similarly, Eq. (11), when written in the time domain, is
a generalization of the inversion formula for the Radon
transform.

We believe that these expansions will be useful in both
direct and inverse scattering theory as well as in more
general problems of mathematical physics. As an exam-
ple of the new expansions’ usefulness, we derive below

new representations of the potential in terms of scatter-
ing data and the wave field. Similar representations
have been suggested as essential parts of self-consistent
methods for solving the inverse problem. See Newton!'?
for Schrodinger’s equation and Rose and Cheney!® for
the wave equation.

First we note that Eq. (11) is a generalized eigenfunc-
tion expansion. It can be reduced to the usual eigenfunc-
tion expansions for the Schrodinger,! wave,'* and acous-
tic equations'> by making the choice 7=0. Setting
=& (x—y) with & € §? results in a different expan-
sion, one that is useful in inverse scattering. To be
specific, we will consider the variable-velocity wave equa-
tion (g=0). We make the further restriction that c,,
=]. We then multiply both sides of (I11) by
V(y)=1—c ~*(y) and integrate with respect to y. This

| yields

V(x)=(4r?) "sz_wdww “2exp(—iwé- x)fdzf v (0,2,x)A4(0,2,&), (12)

where A is the scattering amplitude [Eq. (7)]. Equation (12) shows that the sound speed and the scattering amplitude
are transform pairs in the sense of (11).

Equation (12) was obtained by different methods in Ref. 13. A similar representation for the potential in the
Schrodinger equation was obtained by Newton in Ref. 12. A representation for the speed in the wave equation in terms
of near-field quantities was given in Ref. 9. All these representations are special cases of (10) and can be obtained sim-
ply by our making particular choices of the various parameters.

Equation (10) can also be used to obtain new results. We now derive a representation of ¥ when either the transmit-
ter or receiver is close to the scatterer; i.e., one or the other is in the near field but not both. Again we consider the wave
equation with ¢,, =1. One sets z(x,y) =|x—p| — |y—p| in (10); both sides of the resulting equation are multiplied
by V(y) (—4r|y—p|), and then integrated dy over R>. Next we use the equations G* =G¢" +w2fG¢ VG ™* and
G =Gt —G¢. Two representations for ¥ are obtained; they correspond to different possible experiments. In the
first p is chosen to be in the near field, while the boundary surface dQ is taken to be the surface of an arbitrarily large
ball centered about the scatterer. After using the far-field forms of G T one obtains

V(x)=—4r%)"x—p| sz_mdww 2 ’i“’l""PILZdzi vy (w,2,p)y T* (0,2,x). (13)

For this representation of V¥ the data are {y t*(w,2,p): all ®, all Zin S, p fixed}. A second representation of ¥ can be
obtained by a slight modification of the derivation sketched. In this case one assumes that dQ remains in the near field,

while | p| is taken to become arbitrarily large (i.e., p is in the far field). The result is

w R +
V(x)=(8z%) ~lv2 do (in3) “le 7P* | ds, w““(w,f),z)—iG “(0,2,x) —G _(a),z,x)iv—(w,f),z) . (14)
—oo dn on on

In this case the data consist of {y/+5°(w,f),z): all w, all z
on 90, P fixed}.

Thus Eq. (10) can be used to obtain, in a simple and
unified way, the representations of ¥ given in Refs. 9, 12,
and 13. Further, as we have just seen, (10) can easily be
used to obtain representations of V for new experimental
situations.

In summary, we have obtained an infinite set of gen-
eralized eigenfunction expansions. These expansions are
appropriate for variable-velocity equations, such as the
acoustic wave equation, as well as for Schrodinger’s
equation. They provide a natural generalization of the
Fourier and Radon transform. Finally, they can easily
be used to obtain new results for inverse scattering

[

theory.
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