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Spin-Wave Nonlinear Dynamics in an Yttrium Iron Garnet Sphere
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A high-resolution experiment is reported for spin-wave dynamics in an yttrium iron garnet sphere.
For certain parameter values we observe a series of closely spaced spin-wave modes. Interactions be-
tween excited modes lead to various dynamical phenomena including auto-oscillations, period-doubling
cascades, quasiperiodicity, and chaos. Also observed are irregular relaxation oscillations, abrupt transi-
tions to wide-band turbulence, and hysteresis at the Suhl threshold. A theoretical model is studied
analytically and numerically, explaining a number of the experimental behavior patterns.

PACS numbers: 76.50.+g, 05.45.+b, 47.20.Tg, 75.30.Ds

Spin-wave instabilities were first observed' as noisy
anomalous absorption when microwave ferromagnetic
absorption was strongly driven; Suhl gave a theory of
this behavior and remarked (1957), ". . . this situation
bears a certain resemblance to the turbulent state in fluid

dynamics. . . ,
" a viewpoint recently validated by studies

of spin-wave dynamics within the framework of non-
linear dynamics, which views spin waves in a ferromag-
netic sphere as a set of coupled modes, with the dynam-
ics controlled by a low-dimensional attractor. It was pre-
dicted and observeds that excited spin waves may show
a period-doubling route to chaos; further theoretical6 'o

and experimental" ' studies followed. We report here
a high-resolution (10 ) study of the first-order perpen-
dicular pumped instability ("subsidiary absorption") in

an yttrium iron garnet sphere, finding strikingly rich be-
havior in different regions of parameter space, including
single-mode excitation; low-frequency collective oscilla-
tions when two modes are excited; quasiperiodicity, lock-

ing, and chaos when three modes are excited; and abrupt
hysteretic onset of wide-band chaos at the Suhl thresh-
old. We show that much of this behavior can be under-
stood from stability analysis and numerical iteration of a
new theoretical model of coupled modes.

In the experiment, spins on the ferrite lattice subject
to fields Ho and H& sinto~t display a narrow ferromagnet-
ic resonance when yHo to~, with y 1.77x10~ s ' and

to~ 5.79x10'o s '. In addition to this uniform preces-
sion mode, the Heisenberg exchange gives rise to spin
waves. ' A spin-wave pair, (cok, k) and (cok, —k), i.e., a
"mode, " is excited at half field for yHo (cot,/2) cok if
Ht exceeds the Suhl threshold for the first mode to go
unstable. The experiment is performed at T 300 K with

a sphere of pure single-crystal yttrium iron garnet (di-
ameter d 0.066 cm, spherical to 6x10 5, smooth to
0.15 pm) mounted in a resonator with the crystal axis

20 200

15—

10—

'~
\

Suhl
threshol

Abru
of wi

100

E

50 I
0
CL
E

20 tu

O
O

10

1000
DC Magnetic field, gauss

2000

FIG. 1. Regions and boundaries of types of experimentally
observed behavior in the perpendicular-pumped spin-wave in-
stability in an yttrium iron garnet sphere; dc field Hp vs mi-
crowave pump power P; ~Hf.

[111] II Ho J Ht and incident microwave power P; ~H~~

from a klystron oscillator coupled via wave guide and
precision attenuator. Power not absorbed is reflected to
a detector, yielding a dc signal So and also a low-

frequency signal S(t). Figure 1 shows regions and boun-
daries of types of observed behavior in the parameter
space (P;,Ho). As P; and Ho are varied, the Suhl
threshold is marked by a decrease in So which is abrupt
(within 0.05 dB) and reversible except in the shaded
area (1200 (Ho ( 1600 G) where it is abrupt and hys-
teretic, and accompanied by a large increase (50 dB) in

S(t) of wide-band character, with no resolvable spectral
peaks. In the region H) 1600 G and P; =0.1 dB above
the Suhl threshold, we observe collective oscillations
("auto-oscillations") at 10 to 10 Hz, arising from the
coupling between microwave spin-wave modes (10 '

Hz). Their origin is revealed by a high-resolution exam-
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FIG. 2. Microwave absorption in an yttrium iron garnet
sphere as the magnetic 6eld is increased through the Suhl
threshold, showing sequence of single spatial spin-wave modes,
spaced by ddfo= 0.157 G.

ination of the Suhl threshold, showing a series of peaks
(Fig. 2) separated by AHp 0.157 G; these can be un-
derstood as high-order spatial resonances of single spin-
wave modes within the sphere, as originally noted by
Jantz and Schneider. ' For a small change, dk tr/d,
the field change computed from the dispersion relation is
0.152 G for k 3&10 cm '. The 6rst few dips in Sp
are not accompanied by an ac signal, an indication that
only a single microwave mode is excited at each dip. As
Hp is increased, simultaneous excitation of two modes is
possible, and a sinusoidal signal may arise [Fig. 3(a)],
corresponding to a Hopf bifurcation. This collective os-
cillation shows period doubling [Fig. 3(b)] and some-
times a cascade to chaos [Fig. 3 (e)]. The frequency f,p

depends partially on the dynamic interaction of the two
modes and hence on P;; the data are fitted by the expres-
sion f,p K[(P;/P;, ) —1], where P;, is the oscillation
threshold pump power; this dependence is predicted by
our model and is also suggested by the work of Zautkin,
L'vov, and Starobinets. '7

These oscillations do not usually complete a cascade to
chaos before interruption by the appearance of a second,
incommensurate frequency f,'p, [Fig. 3(c)] associated
with the excitation of a third microwave mode. The sys-
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FIG. 3. Observed ac signals S(t) in spin-wave instability
showing (a) periodic oscillation at 16 kHz; (b) period doubled;
(c) quasiperiodic; (d) frequency locking; (e) chaotic; (f)
aperiodic relaxation oscillation.

20

tern then displays quasiperiodicity, including frequency
locking [Fig. 3(d)] and chaos, also predicted by the mod-
el. In the dashed-line region labeled "very noisy collec-
tive oscillations" there is a fairly abrupt onset of a
higher-level base line. In yet another region of Fig. 1, we
6nd so-called "relaxation oscillations" and irregular nar-
row spikes with no spectral peaks.

We model the system as a collection of coupled quan-
tum oscillators. ' The Hamiltonian includes the resona-
tor mode (R), uniform mode (8), and spin waves bk
with energies to~, top, and tok, respectively. These oscil-
lators are mutually coupled with coupling constants G
between R and 8, gk between 8 and bk, and four-mag-
non interactions Tkk. , Skk among [bkj The drivin. g field
P;P xexp( —ito~t) couples with R Fro.m the Hamil-
tonian, we obtain the equations of motion for R, 8, and
bk, and add phenomenological damping terms with their
constants I, yp, and yk, respectively. We transform to
slow variables Ck via bk Ckexp( ito~t/2—) and adia-
batically eliminate R,B, assuming I &&yk. We assume
Ck C k and arrive at a set of coupled equations for Ck
as

Ck - —(yk+i~Ak)Ck —iQgk Pin Ck i gk. [2T« I C„I
'ck+ (skk+Eg, gk*,)ck,ck. },

where AOk =—tok —to~/2 2trhfk is the detuning parameter, and parameters Q and E are functions of G, top, to~, I, and
yo.

The 6xed points of Eq. (1) may be determined exactly if only one mode is excited. The equation Ck 0 may be put
in the form of a point on a unit circle, M+N I Ck I (Ck ) /ICk I, where M i(yk+iAQk)/ QP„~gk, and

N —(2T +kSk+kEkIgk I )/QP, gk. The Suhl threshold occurs at IM I 1. For P;„)Pt (Pt threshold power)
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FIG. 4. (a) Computed behavior for two modes: phase por-
trait for periodic oscillations, asymmetric mode; hf| —300
kHz, hf2 200 kHz. (b) Symmetric mode. (c) Period dou-
bling of asymmetric mode; hf& —385 kHz, hf& 115 kHz.
(d) Symmetry breaking of symmetric mode. (e) Chaotic orbit
following period doubling cascade; hfdf

—410 kHz, hf2 90
kHz. (f) Power spectrum of chaotic orbit, f 2.5 MHz.
(g) Computed phase portrait for quasiperiodic behavior for
three modes, with Poincare section. (h) Poincare section of
chaotic orbit; proximity to period-5 locking produces the ave
points. (i) Chaotic bursts.

the stability of the trivial fixed point (Ck 0) is lost in a
symmetry-breaking bifurcation. This occurs in two
forms: (1) If Re(M/N) )0, one obtains a supercritical
bifurcation in which stable nonzero fixed points emerge
from the origin as P;„crossesP, . (2) For Re(M/N) (0
a subcritical bifurcation occurs in which stable nonzero
fixed points appear below P„and the system will jump to
these at P;„P„resulting in hysteretic behavior. The
experimentally observed hysteresis is probably a related
effect involving the cooperation of neighboring modes.

To explore the behavior of Eq. (1) we perform a nu-
merical iteration' for N 1, then N 2, etc. For N 1,
the system is always attracted to a fixed point, but a hys-
teresis may be displayed as noted above. For N 2,
periodic oscillations are found [Figs. 4(a) and 4(b)]:
Mode 2 exhibits an asymmetric orbit while mode 1 ex-
hibits a symmetrical orbit at twice the period. We simu-
late the spatial modes of Fig. 2 by choosing Af&-f,—500 kHz and hf2 f„and shift f, to simulate the dc
field shift. The computed behavior [Figs. 4(c) and 4(d)]
shows period doubling and symmetry breaking, respec-
tively, and eventually chaotic behavior [Figs. 4(e) and

FIG. 5. Computed parameter-space diagram for the model,
Eq. (1), for up to three active modes.

4(f)l for both modes.
For N 3 modes, new behavior arises: Figure 4(g)

shows quasiperiodic behavior with a smooth Poincare
section of a torus; at higher excitation the section [Fig.
4(h)] is a chaotic attractor. For some other parameter
values the behavior shows chaotic bursts [Fig. 4(i)] and
other forms of aperiodic behavior similar to that ob-
served [Fig. 3(f)]. The computed behavior in parameter
space (P;„,f, ) is shown in Fig. 5 for active participation
of one, two, or three modes (hf3 f, +500 kHz). The
boundaries ST and SN are the absorption thresholds for
increasing and decreasing P;„,respectively, showing hys-
teresis; H, is the boundary for a Hopf bifurcation to a
limit cycle which shows period doubling at the x2
boundary; the line H is a secondary Hopf bifurcation to
quasiperiodicity involving modes 1, 2, and 3; in the upper
central region we find more exotic behavior.

To summarize, these new experimental findings for the
first-order perpendicular pumping exhibit rich structures
comparable to those of chaos and turbulence in fluid dy-
namics. These results, together with numerical compu-
tations from the model, give a surprisingly good picture
of spin-wave dynamics in the chaotic regime.
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Typical parameter values used: P;, 0.015 W; yk 1x10
s ', iggk -1.414X10 W ' 2 s ', Sk„Skk 4.3X10 s

Tkk
—2X10 s '; Tkk 0; E 0.

1188




