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Transition to Anomalous Relaxation: Localization in a Hierarchical Potential
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A model of classical relaxation in a one-dimensional potential with a hierarchical distribution of bar-
riers is studied. The vanishing of an effective diffusion constant results in a transition of the low-lying
states of the master equation from extended to localized, producing a transition from exponential to
anomalous decay.

PACS numbers: 64.70.Pf, 64.60.Ht, 71.50.+t

Stretched exponential relaxation of the form exp[ —(t/
r)~] has been observed in many experimental systems in-
cluding glasses, '2 spin-glasses, amorphous semiconduc-
tors, charge-density waves, and proteins. s Such relax-
ation is often equally well fitted by a sum of a few simple
exponentials. Thus one may question whether it is the
true asymptotic behavior, or rather a convenient parame-
trization when the observed decay is dominated by a long
intermediate time period characterized by several time
constants. In fact, a crossover at very long times from
stretched to simple exponential decay was observed in
Ref. 5. Recently there has been much effort devoted to
the construction of simple models of anomalous relaxa-
tion. " A common feature is the introduction of a dis-
tribution of microscopic time scales, often in a hierarchi-
cal fashion. " However, stretched exponentials result
only for special choices of this distribution. A physical
mechanism explaining how this distribution might vary,
producing a transition from simple to stretched exponen-
tial behavior, is lacking. Simultaneously, there has been
much work on the problem of diffusion in random sys-
tems with asymmetric hopping rates, ' ' and the effects
of localization. ' '

In this paper, these two approaches are connected to

yield a simple physical mechanism for a transition to
anomalous decay. I consider a model of relaxation in a
one-dimensional harmonic potential with a self-similar
distribution of barriers, specified by a parameter R. This
model is motivated by the idea that relaxation in glassy
materials may be qualitatively described in terms of the
motion of the system in phase space on a free-energy sur-
face with many local minima separated by barriers of all
scales. "'5 A transition is found which may be charac-
terized in terins of the eigenstates of the master equation
giving the dynamics. For R &R„ the low-lying states
are extended on the equilibrium length scale about the
global minimum. An effective diffusion constant may be
defined and relaxation is simple exponential for all time.
For R &R„ the low-lying states are localized at the
most difficult barriers to cross. Relaxation is given by a
sum of exponentials which dominate the decay over a
long intermediate time. This sum may be approximated
by a stretched exponential.

The model I consider is illustrated in Fig. 1. The state
of the system sits on integer sites x in a one-dimensional
potential E(x) —,

'
tcx . To move one site to the left or

right, the particle must hop a barrier; these are arranged
in a hierarchical pattern. The dynamics is given by a
master equation,

dP(x)/dt =W„+ I „P(x+1)+ W„i„P(x—1)—(-W„„+i+ W„,„—i)P(x) = —Q„M(x,x ')P(x'),

P(x) is the probability to be at x, W„„~I is the rate
to hop from x to x + 1, and M (x,x ') is the master-
equation matrix. I choose the rates

rate = R
2 R

Rn(x) [E(x)—E(x+1)]/2
x,x+1 '7

[E(x+1)—E(x) lx+1,x x,x+1 e
(2)
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R" x represents the barrier between sites x and x+1.
n(x) =n if (2x+ 1)mod(3 ) =0 for all l ~ n. If we write
R"=exp[ —neo/T] in terms of a free-energy barrier n5p,
as T varies from 0 to , R varies from 0 to 1. The ex-
ponential factors in (2) give the asymmetry in the rates
due to the potential E(x). The choice is uniquely deter-
mined '

by detailed balance and the requirement that for
R =1 (equal barriers), Eq. (1) reduce to a discretization
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FIG. l. Hierarchical barriers in a harmonic potential F.(x).
The state of the system sits on integer sites x. To move right or
left it must hop a barrier. These are arranged in a trifurcating
hierarchical fashion, labeled by the rate 8' R" to hop when

0 [see Eq. (2)]. Unlabeled barriers have rate &=1.
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D(N cro R) NI+hE/n3 0 fOr R &R,. (3b)

For R & R„asymptotic motion is diffusive. For R & R„
D 0; a scaling argument, ' (x2)-D(x)t, gives asymp-
totic algebraic subdiffusive motion.

For x & 0, we are interested in how the barriers effect
the decay to x 0. Making a standard transformation, '

y(x) e " P(x),

M(x x r) E(x)/2M(x x ') e E(x')/2
(4)

we have dI///dt —Mlle, where M is symmetric. Its ei-
genvectors Ilv;, with eigenvalues X;, form a complete
orthonormal basis, in terms of which the time evolution
of the system is

P(x r) -g e '"''I/r (x)g I//'(x')P(x'0)e '"''e
For harmonic E(x), and R 1, the eigenvalues X; and
eigenvectors y; are those of the quantum harmonic oscil-
lator with potential V(x) —,

'
x [E(x)—I].

The asymptotic behavior of the system is determined
by the smallest nonzero eigenvalue kI. For the rates (2)
I have numerically computed' )I, t as a function of R and
x, for sizes N 3 to 3 . As N increased, XI reached a
limiting nonzero value. Thus the true asymptotic decay
is exponential for all R (however, we will soon see that
the observed decay over long intermediate times may be
quite different). Results for this asymptotic time con-
stant z—= 1/A, t are plotted in Fig. 2 versus Ir, for several
values of R. A least-squares fit (solid lines) by the form

z-8(R)x '( ) as x 0

gives excellent agreement, determining exponent z(R)
and scaling amplitude 8(R), shown in Figs. 3 and 4,
respectively. In Fig. 3 a transition is clearly seen at
R, = —, . For R & R„z(R)-1. For R & R, I find

empirically z(R) = —lnR/ln3.
One can seek to explain the behavior of z(R) by a

scaling argument. Assume that the only effect of the
barriers on relaxation in the potential is to provide an
effective diffusion constant. Then z 1/D(L(x) )x with
D(L) as in Eq. (3). L(x) is the efl'ective size of the
system sampled as the particle decays to x 0. As
L(x 0) ~, for R &R, Eq. (3a) gives D const so
that z(R) 1, as for equal barriers. For R & R„howev-

of the familiar diffusive dynamics in a potential, dx/dt
= —dE/dx+thermal noise (temperature is absorbed in

coupling x ).
Much work has been devoted to the case x =0; the po-

tential is flat and hopping rates symmetric. ' For any
one-dimensional symmetric problem, the diffusion con-
stant D for a system of size N is fixed by the rates, '

1/D(N) (1/N)gx 1/8'x x+I. For the rates (2) (with
0), the sum as N ~ gives a transition at R, = —,':
D(N ~,R) —', (1 —1/3R) forR &R, = —', , (3a)
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FIG. 2. Asymptotic relaxation time r vs rc for several values
of barrier parameter R. The curves between R l and R

0.25 are for R 0.8, 0.6, 0.4, R, 3, and 0.3. Dots are nu-
merically computed. Solid lines are least-squares fits by the
form r ~8(R)x
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FIG. 3. Exponent z(R) vs R. Dots are from least-squares
fits to the data of Fig. 2. Dashed line is prediction, z(R) =1
for R & R, —, , z(R) —lnR/ln3 for R &R,
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er, Eq. (3b) gives D(L ~) 0 as a power of 1/L. So
if we know how L scales with x, we can compute the
anomalous value of z(R) & 1. The dependence L(x) re-
quired to agree with the empirical result above is L
—1/x. This is to be compared with the naive guess, the
equilibrium length L,q- 1/Ji

One can explain the above results for exponent z(R),
scaling amplitude 8(R), and length L(x) by a simple
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Ansatz .For R & R„ the asymptotic decay is governed by the combined effect of all barriers within a region -L,q of

the global minimum, and given in terms of an effective diffusion constant. But for R & R„ the asymptotic decay is

determined by the single most difficult barrier for the system to cross in moving from large x to x =0. That is,

z =max [1/W„+1 „] for R & R, .
x)p

Performing the maximization in (7) one finds

r =a-'"" " e " exp{(—lnR/ln3) [ln( —41nR/ln3) —I]}

due to the barrier at position

(7)

(8)

2 1nRXp=
ln3

(9)
tion function (x(t)x(0)). Using Eq. (5) one can derive
the result

Thus, for R & R„one has the desired length xo=L
—1/tr, and the exponent z(R) —lnR/ln3. In Fig. 4
the scaling amplitude from Eq. (8) for R &R, (dashed

line) is compared with the numerical results obtained
from the fits in Fig. 1. For R & R, the prediction 8(R)

1/D(2L, q, R) is also shown. Agreement is excellent.
I have also numerically computed' the eigenvector

y1(x) for the eigenvalue X1. I find that for R & R„as
0, y~ approaches the form expected for the equal-

barrier case, i.e., the wave function for the first excited
state of the harmonic oscillator,

y1 (x)-x exp[ —E(x)/2] -xyp(x),

where yp is the equilibrium eigenvector with kp=0.
However, for R &R„as x 0, yl(x) is localized in a

sharp spike at the most difficult barriers at +'xo given

by Eq. (9). The other low-lying eigenstates consist of lo-

calized states at the second, third, etc. most difficult bar-
riers to cross, until the barrier of interest lies within a
distance -L,q of the origin.

To see how the above eigenstate structure effects the
relaxation of the system, consider the dynamic correla-
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FIG. 4. Scaling amplitude 8(R) vs R. Dots are from least-

squares fits to the data in Fig. 2. For R & R, —,', the dashed

line is the prediction from Eq. (8). For R &R, = —,', the

dashed line is the prediction 8(R) 1/D(2L~, R) with L~
= 1/Jx evaluated at lr =0.01.

(x(t)x(0)) =g; a; e

2
a;= g„xylo(x)y;(x)

(10)

Only the antisymmetric y; give nonvanishing a;. For
R&R„as ir 0, since imari(x)-x11ro(x), orthogonality
implies that only a& is nonzero. Decay is pure exponen-
tial for all times. R &R„however, as tr 0, the low-

lying eigenstates are localized. xylo(x) is no longer an
eigenvector, and so many if not all the a s are nonzero.
The smaller the eigenvalue k;, the farther from x 0 is
the barrier causing the localization; hence the smaller
the coefficient a; which measures its contribution to the
correlation function. The result will be very long inter-
mediate times during which decay is described by a sum
of several exponentials. If we approximate y;(x) for the
lowest-lying states by a b function at the localizing bar-
rier, the time it takes for the contribution from the
second-smallest antisymmetric eigenstate to die out com-
pared to ki is

t» [E(xp) —E(xp/3) —1n9]/()l, z
—Xi)-ir

Thus the time t to reach asymptotic behavior diverges
faster as x 0 than the asymptotic relaxation time ~ it-
self. The intermediate period before asymptopia sets in

dominates the decay of the correlation function. I have
computed (x(t)x(0)) by direct numerical simulation of
the master equation (1), for values of R & R, and
R &R,. The simulations verify the picture presented
above, and for R & R, the observed decay is well fitted

by the stretched exponential form. Details will be pre-
sented in a longer paper.

I have also investigated a variation of the model
presented here, in which the barriers are placed in a ran-
domly shuffied configuration (but still symmetric about
x =0). Preliminary results indicate the same qualitative
behavior. Although the above model is one dimensional,
the physical idea that anomalous relaxation is associated
with localization of states in deep wells far from equilib-
rium may extend to more general geometries. Diffusion
in random potentials in more dimensions can be anoma-
lously slow. Relaxation in the multidimensional phase
space of a many-degree-of-freedom system may be dom-
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inated by effectively fewer-dimensional slow modes, such
as the diffusion of domain walls. Thus one may hope
that the picture of the transition to anomalous relaxation
presented here may apply in many more general physical
systems.
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