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Diffusing-Wave Spectroscopy
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We obtain useful information from the intensity autocorrelations of light scattered from systems
which exhibit strong multiple scattering. A phenomenological model, which exploits the diffusive nature
of the transport of light, is shown to be in excellent agreement with experimental data for several
different scattering geometries. The dependence on geometry provides an important experimental con-
trol over the time scale probed. We call this technique diffusing-wave spectroscopy, and illustrate its
utility by studying diffusion in a strongly interacting colloidal glass.

PACS numbers: 42.20.Ji, 05.40.+j

Quasielastic light scattering (QELS) has found wide
use in the study of many dynamic processes. ' By moni-
toring of the time-dependent fluctuations in the intensity
of the scattered light, it is relatively simple to extract
useful information about the dynamics of the scatterers.
However, this simplicity requires QELS experiments to
be performed in the strictly single-scattering limit. As
the concentration of scatterers increases, a multiple-
scattering regime rapidly is approached, making the in-

terpretation of the data extremely difficult. Until now,
this has limited the effective application of QELS to the
single-scattering regime. Very recently Maret and Wolf
have reported an experimental measurement of the in-

tensity autocorrelation function in the multiple-
scattering limit and have suggested a simple way of
treating the data. Subsequently, Stephen derived
theoretical expressions for the functional form of the au-
tocorrelation function in the multiple-scattering limit.
This suggests the possibility of extending QELS to the
multiple-scattering regime.

In this Letter we show that useful information about
the dynamics of the scatterers can be obtained in the
multiple-scattering regime by exploitation of the fact
that the transport of the light is diffusive. This diffusive
transport leads to autocorrelation functions which are
highly dependent on the experimental geometry. How-

ever, by properly including these effects in the calcula-
tion of the autocorrelation functions, we are able quanti-
tatively to determine their functional form. Here we

show that this geometrical dependence can be exploited
to probe dynamical processes on many different time
scales. This both extends the application of QELS to the
multiple-scattering regime and results in a new method
of studying complex systems where the dynamics depend
on the time scale. We call this new technique diffusing-
wave spectroscopy (DWS).

We consider a system of noninteracting spherical scat-
terers with a diffusion coefticient D. We define a charac-

teristic diffusion time ro I/Dko, where ko =2tr/k and X

is the wavelength of light in the medium. Then, as
shown by Maret and Wolf, the electric field autocorre-
lation function can be written as

Gl(z) cL. P(s) exp[ —(2r/io)(s/l )1 ds,

where r is the delay time and P(s) is the probability that
the light travels a path of length s. We assume that the
transport of the light is diffusive, so that the energy den-

sity, U, is described by 8U/Bt DtVzU, with a diffusion
coefficient Di=—cl*/3 and l* the transport mean free
path. Physically, Eq. (1) reflects the fact that a dif-
fusion path of length s corresponds to a random walk of
s/l steps and Gl(z) decays, on average, exp( —2~/ro)
per step. Thus Gl (z) contains a wide distribution of de-
cay times, with the most rapid decay times coming from
the longest paths.

The key to the solution of Eq. (1) is the determination
of P(s) for the experimental geometry. Physically, we

imagine an instantaneous pulse of light at t =0 which
has just begun to diffuse a distance zo yl inside the
sample [U;„(x,y, z, t) =8(z —zo, t)], where we expect
that y= l. Then P(s) is proportional to the time depen-
dence of the light intensity emerging from the sample,
P(s) ~i VU,„,(x,y, z, t) This can be .determined by our
solving the diffusion equation for U with the transforma-
tion s =ct and subject to the condition that U=0 at the
boundaries. In fact, by our noting that G~(r) is a La-
place transform of P(s) the solution is simplified. Final-

ly, for comparison with experiment, we calculate the in-
tensity autocorrelation function, G2(z) =

~
G&(r)

~
. We

note that while this is a physically intuitive method for
obtaining G~(r), it can also be obtained using more so-

phisticated diagrammatic techniques.
We first consider transmission through a slab of thick-

ness L and of infinite extent. For light incident from an
extended plane source and collected from a point on the
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FIG. 1. Intensity autocorrelation functions vs time for
transmission through 2-mm-thick cells with 0.497-pm-diam
polystyrene spheres and p 0.01. Smooth lines are fits to the
data by Eqs. (2) and (3) with / 143 pm for the point source
and I 144 p.m for the plane source.

other side of the slab, we obtain

sinh[y(6z/zo) ' ']
G( z

y/ sinh[(L// )(6z/zo) 'i ]

(L//') (6z/zo) '/'

sinh[(L// )(6z/zo) ' (2)

where the second expression holds for z«zo. By con-
trast, for light incident from a point source on axis with
the detector, we obtain

& (sr/vo)'i~(Lil')
gsinh(y/ (/L)

sinh (
The characteristic time scale is (/ /L ) zo« zo, reflecting
the diffusive nature of the transport. We note that the
experimental time scales ensure that the results are in-

sensitive to y. Physically, this reflects the fact that the
details of the contribution of the first step are not impor-
tant when the typical number of steps is (L// ) » 1.

Typical autocorrelation functions obtained in trans-
mission are shown in Fig. 1. We use 0.497-pm-diam
polystyrene latex spheres at a volume fraction of p 0.01
and L 2 mm. Light from a 488-nm laser was focused
to a point of =50-pm diam on one side of the sample,
and the scattered light was collected from a 50-pm point
on the other side with imaging optics. The resulting in-
tensity autocorrelation function is shown in Fig. 1, curve

a. For comparison, when the incident light is expanded
to a 1-cm-diam plane source, the resultant autocorrela-
tion function is shown in Fig. 1, curve b. The data are
fitted by the appropriate equations above with the as-
sumption that zo=3.73 msec, obtained from a QELS
measurement at (I) =10, in the single-scattering limit.
In both cases, the functional form of the autocorrelation
function is well described by the appropriate formula,
the only fitting parameter being I*. We obtain I*=143
pm for the point source and / 144 pm for the plane
source. The excellent consistency confirms that the
different decay rates of the autocorrelation functions in

Fig. 1 are due solely to geometric effects. Physically this
difference reflects the fact that for a plane source, there
are more long light paths contributing to G2(z), result-

ing in a faster decay.
The first cumulant of G2(z) for a plane source is

I ) 4(L// ) /zo, as can be seen by our taking the loga-
rithmic derivative of Eq. (2) and letting t 0. Experi-
mentally, we find I (-L when the sample thickness is
varied from 0.3 to 3 mm. We emphasize that the control
of L provides a simple and convenient method for experi-
mentally varying the time scale probed. Finally, in con-
trast to conventional QELS, we find no dependence of
G2(z) on the collection angle, as expected for multiple
scattering.

The value of / can also be determined from static
measurements of the width of the enhanced backscatter-
ing cone, and through theoretical calculations. s ' In-
terestingly, measurements and calculations for slightly
smaller spheres suggest a value of / =200 pm for this
volume fraction, substantially larger than the value ob-
tained from DWS in transmission. We find similar be-
havior using other sphere sizes, and consistently obtain a
smaller value of / with dynamic measurements than is
obtained from static backscattering. We have ruled out
absorption as the cause of this discrepancy. Equation
(1) can be simply modified to include absorption and the
resultant expressions account very well for data obtained
from samples with absorbing dye added. " The origin of
the differences in / is not known.

We can also solve the diffusion equation for a back-
scattering geometry, which provides additional interest-
ing information. We consider an extended plane-wave
source incident on one face of a slab of thickness L and
infinite extent and calculate Gl(z) for light collected
from a point on the same face, obtaining

sinh[(L//*)(6z/z()) ' (1 —y/*/L)]
G) (z)=,i2

~ exp[ —y(6z/zo) '~ ], for L &&/*.
1 —y/* L sinh L//* 6z zo

'i2 (4)

In Fig. 2, we show autocorrelation functions obtained
from slabs of different thicknesses containing the same
sample and using an extended plane source while collect-
ing from a point in backscattering. To ensure that all
the light collected has been multiply scattered, as re-
quired by our model, we use a polarizer to select only the

polarization perpendicular to the incident light, although
the behavior of the parallel polarization is nearly the
same. For comparison to the theoretical expressions, we
plot the logarithm of G2(z) as a function of (z/zo)'
With use of /* =143 pm from the transmission data and
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FIG. 2. Intensity autocorrelation functions vs square root
of reduced time for backscattering from cells with different
thicknesses L: Curve a, L 2.0 mm; curve b, L 1.0 mm;
Curve c, L 0.6 mm. The solid lines through the data are fits

by Eq. (4) with I set equal to 143 pm and y 2.0. The
dashed line is G2(z)—:

i G|(z) i

2 from Eq. (5) with y 2.0.
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FIG. 3. Intensity autocorrelation functions vs square-root

time for transmission and backscattering from mixtures with
0.497-pm- (P 0.04) and 0.312-pm-diam (p 0.01) polysty-
rene spheres, with L 1.0 mm. Curves a: Noninteracting mix-
ture. Curves b: strongly interacting colloidal glass. Circles
represent transmission data for the strongly interacting glass
scaled by the ratio of I* for the two samples.

G|(z) = [1+y(6z/zo) '~ ] ' forL && yl*. (5)

for F0=3.73 msec, the only unknown parameter is y. If
we compare each data set to Eq. (4), we obtain excellent
agreement at all times and for all L with y 2.0. We ob-
tain this same form for G2(z) in backscattering for all
sizes of spheres that we have tried, down to diameters as
small as 0.091 pm, and have found y to vary by only
= 10%. We note in addition that the data of Maret and
Wolf2 are also well described by this form.

Since ln[G2(z)] —z in Eq. (4), the slope is infinite as
z 0 for an infinitely thick slab. In this case, there are
no finite-size effects and the data would not depend on
I . However, as can be seen in Fig. 2, the data roll over
at short times. This is due to the finite thickness of the
sample which cuts off the longest paths of the diffusing
light which cause the decay at the shortest times, and
introduces an I* dependence. It is therefore possible in

principle to obtain l from backscattering data for finite
slab thickness. The values so obtained are consistent
with the dynamic transmission measurements.

We emphasize that in contrast to the case of trans-
mission, in backscattering G2(z) contains contributions
from paths of all lengths. Thus Gz(z) is very sensitive to
the details of how the propagating light is converted to
diffusing light in the first several scattering events. We
have made the simplest approximation by assuming that
the conversion occurs at a single distance, yl*, into the
sample. This approach clearly agrees with the experi-
mental data. However, the actual conversion process is
considerably more complex and other approximations
can lead to substantially different results.

We can modify the initial conditions of the diffusion
equation to reflect the spatial dependence of this conver-
sion. One approach is to use an exponential for U;„,
exp( —z/yl*). This changes the form of G|(z) dramati-
cally,

Unfortunately, as shown in Fig. 2, this form fails to fit
the data, particularly at longer times. We note that
Stephen also obtains a power-law form for the decay of
Gi(z) similar to Eq. (5) using more sophisticated di-
agrammatic techniques. However, his approach is ex-
clusively for small, isotropic scatterers. By contrast,
large particles scatter primarily in the forward direction,
so that many scattering events are required to convert
propagating light fully to diffusing energy. This suggests
that the failure of an exponential form for U;„may arise
from an inadequate accounting for this scattering anisot-
ropy.

The problem of the conversion of propagating light to
diffusing light by anisotropic scatterers is a long-stand-
ing one. ' An alternative approach' is to modify the
boundary conditions for the diffusion equation to account
for this complex conversion. Use of these modified
boundary conditions makes the expression for G2(z) sub-
stantially more complicated but does not change the
essential form of the decay. Our expression in Eq. (4)
has the advantage of simplicity while accounting for the
data very well. However, a more precise description of
the conversion from propagating to diffusing intensity is
clearly desirable.

To illustrate the utility of DWS, we study the Browni-
an dynamics in dense colloidal suspensions both with and
without strong Coulombic interactions. We use mixtures
containing 0.312-pm-diam spheres at p, =0.01 and
0.497-pm-diam spheres at pb =0.04. In one sample,
ion-exchange resin was added to decrease the electrolyte
concentration; the resultant strong Coulombic repulsion
caused the formation of a colloidal glass. ' In Fig. 3,
curves a, we show the measured G2(z) for both the
transmission and backscattering geometries for the mix-
ture containing the noninteracting (no added ion-
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exchange resin) colloidal suspension. We have again
used a logarithmic scale for G2(r) plotted as a function
of r. On this plot, G2(r) for backscattering is linear
despite the fact that the sample is a mixture of two
different sized spheres, each with its own distinct zo.
This demonstrates that DWS is not as sensitive to
polydispersity as QELS because of the additional averag-
ing that arises in the multiple-scattering geometry.

For comparison, in Fig. 3, curves b, we show G2(r)
measured, in both geometries, for the strongly interact-
ing colloidal glass. In contrast to the noninteracting
sample, G2(r) for backscattering is highly curved. This
reflects the fact that in a glass, the mean square displace-
ment of each particle is nonlinear in time. Physically,
G2(r) contains contributions from many path lengths of
the diffusing light [Eq. (1)]. The dephasing of light
traversing long paths is caused by the cumulative effect
of small displacements of each particle. These occur on
a short time scale. By contrast, the dephasing of light
traversing shorter paths requires large displacements of
each particle. These are hindered in the strongly in-
teracting glass. Experimentally, we find that the long-
time behavior of G2(r) has a decay time of greater than
10 sec, confirming our expectation that large particle dis-
placements are frozen.

The G2(r) measured in transmission contains contri-
butions only from longer paths and thus decays much
more rapidly, as seen in Fig. 3. We expect that the time
for the small motions (much less than the interparticle
spacing) that contribute to the dephasing is nearly iden-
tical for both samples. However, to extract to from the
transmission data requires knowledge of l . This can be
done experimentally through comparison to a sample
with known io, for which l is obtained from G2(r) in
transmission. Then we obtain l for the samples of in-
terest by exploiting the fact that the static transmission
for diff'usive transport scales as l /(L+4l /3), provided
absorption is negligible. ' We find l 51 pm for the
noninteracting sample and 57 pm for the interacting
sample, the difference reflecting the effect of the static
structure factors. ' If the time axis of the interacting
sample is scaled by the ratio of these l, the two
transmission G2(r) are nearly identical. The results are
shown in Fig. 3; they confirm the scaling of Gz(i) withl, the linear dependence of the static transmission of l
and that the short-time motion of the particles is essen-

tially insensitive to the interactions.
The results presented in this Letter illustrate the po-

tential of DWS to study dynamics of systems with multi-
ple scattering. DWS extends QELS to multiple scatter-
ing media and is particularly useful for the study of sys-
tems with diferent time scales. All times are probed in
backscattering, while the very early times can be probed
by transmission. However, to exploit DWS fully, I* and
y must be measured independently. In addition, an un-
derstanding of their dependence on particle size, concen-
tration, and structure factor should be developed. We
conclude by noting that our emphasis here has been on
the utility of DWS for light scattering. However, the
technique should be much more general and be applic-
able with photons, neutrons, phonons —whenever the
diffusion approximation is valid for wave propagation in
a disordered medium.

We thank Michael Stephen and Georg Maret for very
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