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Numerical Studies of Enhanced Chiral Condensates
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The results of a systematic numerical study of spontaneous chiral-symmetry breaking in gauge
theories with slowly running couplings are summarized. For a range of such theories, the chiral conden-

sate can be considerably enhanced with potentially important physical consequences in technicolor
theories.

PACS numbers: 11.30.Qc, 11.30.Rd, 12.50.Lr

In a recent series of papers, two of us have proposed '

that in asymptotically free theories with slowly running

couplings, the chiral condensate (~0) could be enhanced
well above its naive value —roughly the cube of the
confinement scale A of the theory. It was pointed out
that this could be achieved without a substantial increase
in the Goldstone-boson decay constant F=A. In tech-
nicolor theories, this behavior could play a role in solving

a long-standing problem.
The constraint of adequately suppressing the flavor-

changing neutral currents in these theories has led to un-

acceptably low estimates for the ordinary-fermion mass-
es and pseudo-Goldstone-boson masses. These masses,
however, are directly proportional to the condensate
(~0). If the condensate can be enhanced, the above
masses can be lifted into a more reasonable range
without substantially affecting the masses of 8' — and
z04

The purpose of the present Letter is to summarize the
results of the first systematic numerical study of theories
with slowly running couplings. The slow running is en-
visioned to arise from the only physical mechanism that
we know of—the vacuum-polarization effects of the
large number of fermions that typically inhabit these
theories. Although sufficiently slow running is not gener-
ic to such theories (a modest fine tuning of the fermion
number being required), it is not difficult to construct a
long list of potentially realistic, asymptotically free
theories with the desired property.

The study being reported here has covered a range of
the parameters describing a slowly running theory. An
interesting limit that has been included in the study is

that in which the coupling does not run at all above the
chiral-symmetry-breaking scale. This limit effectively
corresponds to the assumption of the existence of a non-

trivial ultraviolet fixed point. Since we know of no
natural physical mechanism to produce such a behavior,
we regard this limit as unphysical. It is nevertheless in-

cluded since it provides an upper bound for the conden-
sate-enhancement effect of asymptotically free theories.

The theories of interest will be governed by several pa-
rameters:

(1) A confinement scale A.

t M k dk Z(k)
k 2yZ2(k)

Here, a(k) is the running coupling and C2 is the
Casimir operator of the fermion representation. Landau
gauge is employed. Above the scale p—=2Z(0) of fer-
mion condensation, the running coupling will be taken to
be

a(k) = a( )p
1+(b —bb)a(p)ln(k/p)

(2)

Since the gap equation is basically perturbative, it
cannot be expected to govern chiral-symmetry break-
down completely. In particular, it is almost surely un-

reliable in detail for k ~ p. We nevertheless pa-
rametrize this part of the equation by introducing a
"confinement" scale A in terms of which p=2Z(0) is

fixed. The running coupling a(k) is taken to reach some
fixed value a~ at k=A and to remain at this value for
k &A. This value must be above the critical value

a, =tt/3C2 required to trigger spontaneous symmetry
breaking and give a nonzero Z(p). For the numerical

(2) A physical cutoff M»A. In technicolor theories,
M is identified with the extended technicolor scale.

(3) The coefficient b of the lowest-order term in the P
function. It comes purely from the gauge-field dynamics
and is operative below the scale associated with fermion
condensation. It is typically a number of order unity.

(4) The corresponding coefficient b —Bb, operative
above the fermion condensation scale. It contains the
additional contribution —Bb due to fermion loops. In
slowly running theories, b —bb is typically less than 0.3b.

Both b and bb can be regarded as effective one-loop
parameters that include higher-order contributions. In
many theories, slow running is achieved only by in-

clusion of higher-order effects.
To produce order-of-magnitude estimates for the en-

hanced condensate, we will make use of the ladder ap-
proximation to the gap equation for the dynamical mass

Z(p),

Z(p)- a(p) k dkZ(k)
k 2+Z2(k)
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—

)
NM Z(M)
3zC2a(M)

' (4)

study being reported here, C2 and therefore a, are taken
to be of order unity. If p turns out to be above A, the
coupling is taken to run according to a(k) =a(p)/
[1+ha(p)ln(k/p)l for A~ k (p. All that is expected
from this procedure is an order-of-magnitude estimate of
tt/A. Since b is of order unity and since aA/a, is taken to
be of order of (but somewhat larger than) unity, there
are no small parameters in this momentum regime. The
solution to the gap equation, therefore, produces what
might be expected: p/A-1. Since F=p is always a
property of spontaneous chiral-symmetry breaking, it
then turns out that F/A-1 for all the theories being
considered here. It is, of course, not this ratio but the
relative size of the condensate and p that is our main
concern.

Another output of our treatment of the low-mo-

mentum part of the integral equation is the value of
a(p) at p) p. It is found, as expected, that a(p) =a,
for p) p. Thus the combination (b —Bb)a, is a mea-
sure of the rate of running of the coupling for p & p.

The gap equation is solved numerically with a self-
consistent iterative procedure. The condensate can then
be computed by our numerically evaluating the integral

(
—

)
N " k dkZ(k) (3)2r" k +Z (k)

where N is the dimensionality of the fermion representa-
tion. 'o An alternative expression can be obtained by our
setting p =M in the gap equation (1) and noting that the
integral is the same as that appearing in Eq. (3). Thus

and Zo=Z(0). Thus the value of (+%')M without en-

hancement can be estimated from Eq. (3) to be roughly
of order (N/2x )Zo times a numerical coefficient of or-
der unity and a factor of [ln(M/Zo)]". If the theory is

slowly running, producing enhancement, a good measure
of the enhancement is the dimensionless integral

Io= 1 k dk Z(k)
Zo" k +Z (k)

Io can equivalently be defined by use of the end-point ex-
pressions [Eqs. (4) and (5)].

Table I is a summary of our numerical results for Io.
It includes a range of slowly running asymptotically free
theories as well as some normally running theories for
comparison. The value of Io in the normal case lies in

the range 5 to 10. This can be understood as arising
partly from the (lnM)" factor mentioned above. For
simplicity, a single value of a, =z/3C2 and of b are used

throughout the survey reported in the table. We have
chosen a 0.56 and b =1.12. The cutoff M is set equal

TABLE I. The condensate enhancement Io for a range of
slowly running theories. Ip(int) is computed with Eq. (7) and

Io(end pt) is computed with Eq. (5) and divided by (N/2z )Z$.
The low-momentum part of the gap equation IEq. (1)l is ap-
proximated as described in the text leading as expected to
Zo/A-l, where A is an input confinement scale. Since the re-
sult a(p=2ZO)/a, -l is also a feature of our treatment of the
low-momentum part of Eq. (1), (b —bb)a, is a measure of the

rate of running of the coupling in the range p )p. We regard
(b —bb)a, &0.5 as normal running, and (b —bb)a, &0.3 as

slow running.

The condensate is therefore determined by the values of
Z(p) and a(p) at the cutoff. Another expression for
(WO)sr in terms of these quantities at the cutoff was de-
rived by Bando et al. " by differentiation of Eq. (1).
This yields

(
—

)
NZ'(M)

3xC2[a(M)/M']"
(5)

where the prime denotes differentiation with respect to
M. We have used each of these expressions to evaluate
(q q &sr.

The value of an ordinary-fermion mass in a tech-
nicolor theory is given by

mI=(gst/M')(q q)st, (6)

where g~/M is the strength of the relevant effective
four-fermion interaction. The enhancement of (+q'&sr in

a slowly running asymptotically free theory is due to the
relatively slow initial fall of Z(k) before it takes on its
final asymptotic form. To get a measure of the enhance-
ment effect, we first note that without slow running the
final asymptotic form sets in almost immediately beyond
p=p. It is Z(p) —(Zo/p )(lnp)" ', where y=3C2/2mb

0.049
0.138
0.227
0.316
0.406
0.495
0.584
0.638
0.67
0.71
0.75
0.78
0.82
0.85
0.87
0.89
0.92
0.96
0.995
1.03
1.07
1.10
1.12

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.27
0.25
0.23
0.21
0.19
0.17
0.15
0.14
0.13
0.1 1

0.09
0.07
0.05
0.03
0.01
0.00

1.19
1.17
1.14
1.18
1.13
1.08
1.04
1.06
1.08
1.03
1.01
0.98
0.94
0.91
0.93
0.91
0.87
0.83
0.79
0.75
0.70
0.65
0.63

7.7
8.6
9.7

13.5
16.0
19.6
25
36
49
56
65
77
92

112
152
210
265
340
570
770

1350
1800
2750

7.8
8.7
9.9

13.7
16.3
19.9
25
36
50
57
66
78
93

113
154
213
270
350
580
780

1350
1850
2800

(b bb) a, a (p—=2Z0) Io(int) Io(end pt. )
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to 10 A. ' We emphasize that these parameters, as well

as those varying in Table I, are not intended to corre-
spond to any specific theory. They are instead represen-
tative of a range of theories that run with varying de-
grees of slowness.

The qualitative reason for the large condensate
enhancement in slowly running theories is that the
dynamical mass Z(p) initially falls less rapidly than
(1/p )(lnp)" '. When a(p)=a„as is the case in the
momentum range just above (u, Z(p) is expected to
behave roughly like 1/p. In Refs. 2 and 3, a rough
analytic estimate of Io was made by the assumption that
this behavior persists all the way to p=(uexp[l/[a„(b
—Bb)]]. It can be seen from Table I that this estimate
is not bad for the slowly running range 0.3) (b —bb)a,
)0.2. For smaller values of (b bb)a„—it begins to
overestimate Io This . is because the effect of the fixed
cutoff M (=10 A) begins to become important. For
very small values of (b —Bb)a„ Ir( becomes of order 10,
just what would be expected from Eq. (7), with the ap-
proximate 1/p behavior persisting nearly all the way to
the cutoff' M.

In Fig. 1, the actual power-law behavior of X(p) is

displayed for three examples from Table I. In a case of
"normal" running, (b —Bb)a, =0.6 [Fig. 1(a)], the ap-
proximate 1/p behavior of Z(p) sets in very rapidly
beyond p =p, and Io is correspondingly not so large. For
the slowly running case (b Bb)a, =0—.21 [Fig. 1(b)],
the power gradually increases from —1/p to —1/p'
The large value of Io is due to this effect. At the very
end of the range, the rate of fall increases rather quickly
to 1/p . Finally, an example of very slow running is

shown in Fig. 1(c). The initial fall of Z(p) is then even
slower than p

' leading to an even larger Io. At the end
of the range, the power fall again increases to approxi-
mately 1/p '.

The increase of the rate of fall of Z(p) to 1/p as

p approaches the cutoff is a general feature of the
gap equation (1). It is easy to see from this equation
that in this limit, dlnZ/dlnp will approach —1+(b
—Bb)a(M). This is very close to —1 for each of the
above three cases. Without the UV cutoff, the behavior
of Z(p) would eventually approach (1/p ) (lnp)"
The cutoff, however, which should be regarded as a
physical feature of technicolor theories, brings on the ap-
proximate 1/p behavior more abruptly. The fact that
the initial fall of Z(p) in Fig. 1(c) is even slower than

1/p can be understood if it is remembered that when the
running is neglected altogether, the solution of the
linearized gap equation for a )a, is

Z(p) = (C/p)cos[eln(p/po)],

where (. =(a/a, —1) '/ . The instantaneous power behav-
ior is then

—ding/d lnp = I+(.tan[(.'ln(p/po)].
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FIG. 1. The instantaneous power behavior —d in'/d lnp of
Z(p) as a function of p. (a)-(c) are examples of normal, slow,

and very slow running. p is in units of A.
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Below po, the fall will be less rapid than 1/p. It turns
out numerically that po= 30@ in the case of very slow
running. For the slow-running case [Fig. I(b)1, po= p
and the initial fall is already 1/p and faster.

It should be stressed again that the very smallest
values of (b —bb)a', are difficult to attain in realis-
tic theories. There are, ho~ever, many theories' for
which 0.25 & (b —bb )a, ~ 0.15, leading to condensate-
enhancement factors Io of up to 2 orders of magnitude
and more. The numerical study being reported here
makes it clear that this can and does happen, in agree-
ment with the analytic estimates presented in Refs. 2
and 3. It also makes it clear that the arguments to the
contrary presented by the authors of Ref. 11 are in-
correct.

Finally, it is worth mentioning that we have made pre-
liminary estimates of condensate enhancements for some
theories that lose asymptotic freedom above the chiral
condensation scale p Zo. If the parameters are such
that a(p) never gets far above a„p can turn out to be
on the order of the confinement scale, and therefore
smaller than the cutoff M. Condensate enhancements
can then be obtained that are much larger than those of
Table I. A systetnatic study of this possibility will be re-
ported elsewhere.

For any of the theories described here, it remains to be
seen whether the large condensate-enhancement effect
we have exhibited will play a role in a realistic theory of
electroweak symmetry breaking.
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