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Search for y Rays from Supernova 1987A at Energies Greater than 100 TeV
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We searched for ultrahigh-energy y rays emitted by Supernova 1987A with a new cosmic-ray facility
installed at the Black Birch Range in New Zealand. The observations from 13 October to 3 December
1987 suggest no clear clustering of events around the direction of the supernova. We conclude that an

upper limit on the flux of y rays of energies greater than 100 TeV is 1.1X10 ' cm s ' (95% confi-
dence limit) for a differential spectral index a 2.0 and source distance d =50 kpc. This value gives an

upper bound on the y-ray luminosity of the supernova of 5.5X10 erg s ' for 10' -10' eV.

PACS numbers: 97.60.Bw, 95.85.Qx

The supernova 1987A in the Large Magellanic Cloud
(LMC) has provided the first opportunity to study the
emission of particles and electromagnetic radiation of
various wavelengths from a young supernova. The detec-
tion of neutrino bursts by the Kamiokande II and IMB
(Irvine-Michigan-Brookhaven) detectors ' suggested the
formation of a neutron star at the center of the expand-
ing ejecta. A rapidly rotating, magnetized neutron star
may be a powerful source of ultrahigh-energy (UHE)
cosmic rays. Sato, Berezinsky and Prilutsky, and
Shapiro and Silberberg have pointed out that high-
energy y rays and neutrinos may be produced from the
decay of pions generated by the collisions of hadrons ac-
celerated by the neutron star with supernova ejecta. The
detection of these UHE y rays should provide important
knowledge about the origin of cosmic rays and their ac-
celeration mechanism. The flux of y rays should in-
crease with time as the column density of the expanding
shell decreases, until it reaches some optimal value. The
same mechanism will produce high-energy neutrinos,
which can be detected in underground detectors from the
observations of neutrino-induced upward-going muons.
The Kamiokande II group observed no such muons from

the direction of the supernova in the six months follow-
ing the explosion and placed a limit on the neutrino
luminosity of 1.6x10 ' erg s ' for a spectral index
a=2. 1, a cutoff energy 10' eV, and the distance to
LMC 50 kpc. The upper limit on UHE y-ray flux de-
duced from this result is I x 10 ' cm s '. Direct ob-
servations of y rays should provide a more sensitive mea-
surement of the cosmic-ray luminosity of the supernova.

y rays emerge in a later stage, ' "with the maximum in-
tensity occurring about a half to one year after the su-
pernova explosion, ' ' and the observation of y rays in
this time period is the motivation of the present experi-
ment. '

Photon-photon collisions with the cosmic microwave
background radiation of 2.7 K reduce the UHE y-ray
flux as it traverses the distance from LMC to the
Earth. ' The absorption of y rays becomes eA'ective at
energies higher than about 200 TeV and reaches its max-
imum value at 2500 TeV. Thus the detection sensitivity
for y rays of energy less than 200 TeV is important in
this work. ' We designed two types of detectors to ob-
serve these y rays. One is a surface air-shower array
with close spacing and good angular resolution for the
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FIG. 1. The arrangement of detectors on the Black Birch
Range. Circles with crosses and circles ~ith plusses, two
groups of 0.5-m detectors; squares, 1-m detectors; open cir-
cles, mirrors.
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100-TeV region and the other is a mirror system to
detect atmospheric Cerenkov light for the 1-TeV region.
Contemporal observation of the two energy regions may
provide useful information on the energy spectrum and
the emission mechanism of UHE y rays. This Letter is a
report on the first result of the array system. The mirror
system and the results gained with it will be reported in a
separate paper.

The instruments are installed at the Black Birch
Range in New Zealand (1640 m above sea level,
41'45'S, 173'47'E). The array consists of 76 scintilla-
tion detectors. Square-plate scintillators are housed in

pyramidal enclosures. Forty-five of the scintillators are
of 0.5 m in area and 5 cm in thickness. They are
viewed from below by fast 2-in. photomultipliers (Ha-
mamatsu Photonics model H1949) from a distance of 50
cm. A lead sheet of 5 mm thickness is placed on each of
these scintillators to convert y rays in air showers to elec-
tron pairs. The other 31 scintillators are 1 xl m &10
cm and viewed from above, at a distance of 103 cm, by
5-in. photomultipliers (Hamamatsu Photonics model
R877). These are used for particle-density measure-
ments. The detector arrangement is shown in Fig. 1.
The signal of each 0.5-m detector is used for measure-
ment of particle density by use of an analog-to-digital
converter and the time of the passage of the shower front
with a time-to-digital converter of 125-ps resolution.
The timing signal is available for those detectors for
which the output is larger than 0.3 times the single
minimum-ionizing particle signal. Measurement of the
relative delay times of the 0.5-m detectors and the
recording electronics is carried out with cosmic-ray
muons selected by a 20&&20-cm scintillation detector.
The measured timing resolution is 1.2 ns (1 standard de-
viation). The signal of each 1-m detector is recorded
with an analog-to-digital converter only.

The recording system is triggered by any fourfold
coincidence of the 0.5-m detectors within a 150-ns time

FIG. 2. Effective exposure of the array vs y-ray energy
(solid line, left scale), and differential y-ray flux (dashed line,
right scale), which is normalized to our upper limit written in

the text. a 2.0 and d 50 kpc are assumed.

interval. The discrimination level for each detector for a
trigger is 1.8 times the single-particle level. A computer
(NEC PC-9801VX) under MS-DOS operating system is
used to transfer data from modules through a CAMAC
dataway. Data are stored on write-once optical disks of
800-megabyte capacity.

The observations started on 13 October 1987 and
3.88 x 10 events were accumulated by 3 December
1987. The effective running time for this period is 34.6
days. The trigger rate is about 1 Hz. The effective ex-
posure (defined as the product of effective area and
time) was calculated by detailed Monte Carlo simula-
tions ' for y rays from the direction of the supernova and
is shown in Fig. 2 for one day of observation. y rays
with energies above about 40 TeV will be recorded.

The arrival direction of each air shower is computed
by our determining the shower front from the timing sig-
nal in the 0.5-m detectors. In this procedure, the
shower-front structure is approximated as a plane. A
weighted mean is taken in the fit so that detectors with
larger signals are given more significance. The angular
resolution is estimated as follows. The 0.5-m detectors
are divided into two groups as is shown in Fig. 1. Each
group of detectors is used to reconstruct each arrival
direction. We define y, a measure of the angular accu-
racy, as the space angle between these two directions and
determine y as a function of X, the sum of analog-to-
digital converter values of the 0.5-m detectors. (One
minimum ionizing particle contributes about 100 to X).
Figure 3 shows the distribution of y as a function of X.
The three curves in the figure are contours within which
20%, 50%, and 80% of events are contained. The angu-
lar resolution, which is defined as the radius of a circle
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FIG. 4. Right-ascension scan of events near the declination

of the supernova. Each point represents the number of events

within the angular-resolution angle of 1.73' and separated by

4 of the resolution angle in right ascension.
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FIG. 3. The distribution of y as a function of Z. Three
curves which contain 20%, 50%, and 80% of events are shown.

The peak value of the Z spectrum is about 3x10 . %'e
discard events with Z(2x10 (9.5% of total events) as

they have large errors in their directions.
Figure 4 represents a right-ascension scan of events

near the declination of the supernova. We define the an-
gular window as a circle of radius 1.73' centered at de-
clination —69.3' and right ascension 84.0'+1.73'j/4,
where j are integers to specify data sets from various
directions. The radius of the circles, 1.73, is chosen to
maximize the ratio Ns/ JNs, where Nq is the number of
signals and Ng is the number of background showers,
and to contain 53% of signals from the source. No clear
excess appears.

An upper limit on the flux of UHE y rays is obtained
with the maximum-likelihood method. Ten nonoverlap-

ping data sets near the supernova (j=—20, —16,
—4,4, . . .

, 20) are taken to estimate the number of back-
ground cosmic-ray showers. ' This procedure is rela-
tively insensitive to the nonuniformity of observation
time in right ascension. The 95% confidence-level
upper-limit result for Wg is 49 events. The effective ex-
posure is 2.54x10' cm s for the y rays above 40 TeV
from the supernova calculated from the spectrum with

the assumption of a spectral index a =2.0 and complete
absorption by the microwave background radiation (see

within which 50% of events fall, is estimated as
AO= —,

'
y, where le is the median value of y. (A factor

I/J2 comes from the subtraction of two directions and

another 1/J2 comes from statistics). 68 is well ex-
pressed as

68=0 9'(X/10 )

TABLE I. Expected number of events and upper limits on
cosmic-ray luminosity (L~) of Supernova 1987A based on
some models. See text for detail.

Model

Yamada et al. '
Gaisser et al. (cascading)

(no cascading)

Expected
events

526
358
173

Upper limit

Lq (erg s )

1.4X 10
2.6x 10
5.3x 10

'Reference 13.
Reference 14.

Fig. 2). These values give the upper limit on the integral
flux of UHE y rays above 100 TeV as 1.1X10 ' cm
s (95% confidence limit). The UHE y-ray luminosity
of the supernova is given by

L„(E„10'-10' eV)

~ 5.5 X 10 [d/(50 kpc)] erg s

where d is the distance to LMC.
The intensity of UHE y rays observed at Earth may,

with various models, be related to a presumed proton
flux at the source. The expected event number for our
total exposure is tabulated in Table I. Yamada et al. '

calculated the y-ray Aux assuming 10' -eV monoener-
getic proton injection of a total power (L~) of 10 ' erg
s ' and complete absorption by the background radia-
tion, taking the source distance (d) as 56 kpc. The ex-
pected event number is derived from the y-ray spectrum
at a shell thickness 76.3 g cm 2 (where the UHE y-ray
flux reaches its maximum value) and is normalized at
d 50 kpc. Gaisser, Harding, and Stanev' assumed an
E dE proton spectrum with a cutoff at 10' eV and
L~(~ 10 eV) 10 erg s ' at d=50 kpc. The y-ray
spectrum can be regenerated by electron inverse Comp-
ton scattering on the background radiation if the average
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intervening field is «10 ' G, and so two event num-

bers, with and without this cascading effect, are comput-
ed. We can place upper limits on L~ for these models as
shown in Table I.

In conclusion, we have placed an upper limit on the
UHE y-ray luminosity of Supernova 1987A at 5.5X103s

erg s ' above 100 TeV and this corresponds to the
cosmic-ray luminosity of 2.6x10 -1.4x10 erg s

depending upon various models. This result places a re-
striction on models which assume a very active process in

Supernova 1987A as a source of UHE cosmic rays. 4 z'zz
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