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Generalized Entropic Uncertainty Relations

NUMBER 12

Hans Maassen
Institute for Theoretical Physics, University of Nijmegen, 6525 ED NijmegenTh, e Netherlands

and

J. B. M. Uffink '
Institute for Theoretical Physics, University of Amsterdam, 1018XE Amsterdam, The Netherlands

(Received 18 November 1987)

A new class of uncertainty relations is derived for pairs of observables in a finite-dimensional Hilbert
space which do not have any common eigenvector. This class contains an "entropic" uncertainty relation
which improves a previous result of Deutsch and confirms a recent conjecture by Kraus. Some com-
ments are made on the extension of these relations to the case where the Hilbert space is infinite dimen-

sional.
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Let A and 8 denote two Hermitean operators repre-
senting physical observables in an N-dimensional Hilbert
space, and let [I aj)l and [I bI)[ with j=1, . . . ,N be the
corresponding complete sets of normalized eigenvectors.
The uncertainty principle states, broadly speaking, that
for any quantum state ttr the two probability distributions

p =(pt, . . . ,ptv) and q (qt, . . . , qjv), defined by

p, =I«, I tl & I
', q, =1&b, I v & I

',

cannot both be arbitrarily peaked, provided that A and 8
are sufficiently noncommuting. In most text books this
principle is expressed by the Robertson relation':

~,»,8~
2 1&[A,8l&, l,

where A„A and 6~8 denote the standard deviations of
the distributions (1):

(~,A) ' =&A '&, —(&A&,) ',

(~ 8)'=&8') —(&8) )'
This formulation of the uncertainty principle has recent-
ly been criticized ' on the grounds that the right-hand
side of (2) is not a fixed lower bound, but depends on the
state y. For example, when y is an eigenstate of 2, one
has A~A =0, and &[A,8])~=0, so that no restriction on

H(p)+H(q) ~ —21n —,
' (1+c),

where

c =max
I &aj I bk& Ij,k

(4)

More recently, Kraus has conjectured that this relation
may be improved to

H(p)+H(q) ~ —2lnc.

The advantage of these relations over (2) is that they
have a right-hand side which is independent of the state
y. Thus, they yield nontrivial information on the proba-
bility distributions p and q as long as c & 1, that is when

4~8 is imposed by relation (2).
To improve on this situation, so-called "entropic" un-

certainty relations have been proposed 3 4 which rely on
the Shannon entropy H as a measure of uncertainty. For
a general probability distribution P = (P t, . . . , Ptv ),
P; ~0, g;P; =1, on a set of N possible outcomes, the
Shannon entropy is defined as

H(P) = —Q, P, lnP, . (3)

Applying this notion to the probability distributions p
and q introduced in (1), Deutsch has shown the relation
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A and 8 do not share any common eigenvector.
In this paper, we shall prove relation (6). Further-

more, we will show that relation (6) is just one member
of a general class of inequalities, all of which may be
said to express the uncertainty principle in the sense that
they put bounds on the extent to which the distributions

p and q can be simultaneously peaked. Finally we shall
make some remarks on the extension of these relations to
the case where the Hilbert space is not finite dimension-
al.

Let P denote an arbitrary probability distribution over
a set of N possible outcomes, and consider the expression

' 1/r
M(P)= g (P )'" (7)

( —1 &r &Oor0&r).

Expressions of this type were studied in detail by Hardy,
Littlewood, and Polya. We list a few of their proper-
ties.

(a) M, (P) is invariant under a relabeling of the set of
possible outcomes.

(b) M„(P) is convex in P. That is, when P ~'i and P ~ i

are two probability distributions over the same set, and P
is defined by PJ aP~'i+(I a)P~~ I f—or O~a ~1, we
have

M, (P) ~aM, (P ' )+(1 a)M, (P —)

(c) When P =(Pi, . . . , P~) and Q =(Q~, . . . , QM)
are two probability distributions and R is their indepen-
dent product, R;J =P; QJ, one has

M„(R) =M, (P)M, (Q).

(d) M„(P) is a continuous nondecreasing function of r
for —1 5 r 5 ~ provided one defines the following limit-

ing values:
(e) Mp(P) =exp[ —H(P)].
(f) M —i(P) =1/N', where N' denotes the number of

possible outcomes with a probability P~ )0.
(g) M (P) =MaxJPJ.

In view of these properties we may regard the expres-
sions M, (P) for —1 ~ r ~ ~ as measures of the "aver-
age peakedness" of P. Indeed, considered as a function
of P, M, (P) attains its maximal value (unity) only if
PJ =Bj~„where 8 denotes the Kronecker b, and for
r ) —1, its minimal value 1/N is reached only when the
probability is uniformly distributed over all possible out-
comes, i.e., when PJ =1/N for all j. Alternatively, the
class of expressions —lnM, (P) may be seen as a mea-
sure of the amount of uncertainty associated with P, pro-
viding a natural generalization of the Shannon entropy.

Let us now apply these notions to the problem of ex-
pressing the uncertainty principle. Consider the product
M, (p)M, (q), where p and q are defined by (1). From
the uncertainty principle one expects that when A and B
do not share any eigenstate, this product cannot be arbi-

1 ' 1/a=c" Zk I» I' (io)

for 1 ~a ~2, 1/a+1/a' 1. An elementary proof of this
relation may be found in Riesz. For a more general
version of the theorem, see Reed and Simon. The con-
ditions assumed in this theorem are clearly fulfilled for
xk (ak I y), Tjk =(bj I ak), and (Tx)~ =(bj I y). Then,
putting a =2(1+r), a'=2(1+s), we may rewrite (10)
as

M, (p)M, (q) ~c'

for

s ~ 0, r = —s/(2s+1). (i2)

Of course, the role of the operators A and 8 may be in-
terchanged in this derivation. This does not alter the
value of c, so that under the conditions (12) we also have

M„(q)M, (p) ~ c'.

The relations (11) and (13) form the general class of
inequalities alluded to above. Taking r =s =0 in either
of these relations, we arrive at inequality (6).

A natural question at this stage is whether the general
set of inequalities (11) and (13) is more informative
than the special case (6). Consider a simple example.
Let y be the two-dimensional state of a spin- —,

' particle,
and A and B be spin components in orthogonal direc-
tions. In this case, we have c=2 ' . Suppose that the
probabilities of the two possible outcomes of the A mea-
surement are given, say p&

= 4, p2= 4 . What restric-
tion does this put on the probabilities q &, 1 —

q& for the
two outcomes of the 8 measurement? Using relation

trarily close to unity. This intuition proves to be correct.
In fact we may quote a result of Landau and Pollak
which in the present notation reads

arccosc ~ arccosM (p ) +arccosM (q ).

Maximizing the product M (p)M (q) under this con-
dition, one obtains

M (p)M (q)~-,'(I+c)',
a result that, by virtue of the properties (d) and (e)
above, already implies the Deutsch relation (4).

However, one may obtain a better bound on the prod-
uct M, (p)M, (q) for certain combinations of finite r and
s. The key to this is the following theorem due to Riesz.

Riesz Theorem: Let x = (x i, . . . , x~ ) denote a se-
quence of complex numbers and T~k a linear trans-
formation matrix, (Tx)& gk Tjkxk, which obeys

XJ I (T»), I
'=2k I»k I

' f«
=Maxi k I T~k I . Then

1/a'c"' XJ I (Tx), I'
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(6), we obtain

H(q) «0.1309,

corresponding to a value of q1 between 0.03 and 0.97.
Using the general set (11) and adopting the optimal
choice for r and s, r = ——,', s =~, one finds the stronger
result 0.066(q1(0.933, which almost doubles the
lower bound on the entropy:

H(q) «0.2458.

In contrast to this, we note that no restriction on q& can
be derived from the uncertainty relations (2) or (4).

Further, one may ask whether the inequalities (11) or
(13) remain valid for mixed states. For a general mixed

a p(n) q g q(n)

and the question is then whether the relation

M, (P)M, (q) ~c' (i4)
holds. For the case r =s =0 this inequality follows im-
mediately from the fact that the Shannon entropy
H(p) = —lnMo(p) is a concave function of p. However,
for arbitrary values of r, —lnM, is not always concave,
and the validity of (14) is not trivial. Nevertheless, for
the choice (12) one obtains

state,

W=g a ly")(y" l, a„«0, g„a„=l,
we may write the probability distributions corresponding
to the observables A and B as

~ 1/(1+r)' 1+r
~ g, g„a„p/" ~

~ 1/(1+r)«g, g ( (n)) (+r,
~ 1/(1+s)

2r/(r+1)~, + ( (n)) )+s,

~ 1/(1+s)' 1+s
2r/(r+1), ~ ~ g q(&) (is)

fP(x)1 '+'dx (i6)M, (P) =

for a probability density P(x). Unlike its counterpart
(7) in the discrete case, this expression is not bounded
from above for any value of r. Accordingly, the entropy

H(P) = —lnMo(P) = — P(x) lnP(x) dx (17)

may attain negative values.
Now let y(x) be a normalized position wave function,

and

y(k) = &k
l x)y(x) dx

In this chain, the inequality in the middle is derived from
the fact that for all values of n the relation (11) holds for
the pair p

" and q ("), pertaining to the pure states y(");
the first and last inequality signs in (15) are obtained
from an application of the Minkowski inequality. '

Comparing the first and last expressions in (15) we ar-
rive at (14).

A next question is, whether the above results can be
extended to the case where the Hilbert space is not of
finite dimension. In fact the properties (a)-(g) remain
valid when N=ao, with one exception: for r ~0, M,
need no longer be continuous, but is only continuous
from the right. " Furthermore, the Riesz theorem
remains valid, assuming the convergence of the expres-
sions in (10). Somewhat more difficult is the case where
A and B possess an unbounded continuous spectrum.
We will not go into the mathematical details, but as an
illustration only mention the corresponding results for
position and momentum in one spatial dimension. The
analog of definition (7) for continuous variables is

' 1/r

1/a( 1/a „ l y(x) l
'dx (19)

for c=(2z) '/ and 1 =a=2, 1/a+1/a'=l. Again,
putting a =2(1+r),a'=2(1+s), we obtain

M, ( l y l
')M, ( l y l

') ~ (2n) (20)

For r =s =0 this reduces to the entropic relation for po-
sition and momentum,

« I wl ')+H(l((
I
') =»2n, (2i)

derived by Hirschman' and later improved by Beck-
ner. ' In a similar vein, one may recover entropic rela-
tions for angle and angular momentum obtained by
Bialynicki-Birula and Mycielski. Thus the set of ine-
qualities (11) and (13) share a feature with the Robert-
son uncertainty relation (2), namely that they possess a
natural extension to canonical variables, although for po-
sition and momentum they do not yield the best possible
bound.

However, before such extensions can be regarded as
satisfactory expressions of an uncertainty principle, one
must check that their interpretation is preserved. Unfor-
tunately, this is not the case for all of the expressions M, .
Obviously, a desirable property of any measure U(P) for
the amount of uncertainty associated with a probability

t

be the associated wave function in momentum represen-
tation where (k lx) =(2z) '/ e' ". The analog of the
Riesz theorem in this case is the HausdorA'-Young in-
equality':

' 1/a'
ly(k) l'dk
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distribution P is that U(P) should approach its minimal

value whenever the distribution P approaches a b distri-
bution, where the total probability is concentrated on a
single point. The reason for this continuity requirement
is the following. In writing an uncertainty relation which

puts a bound on expressions of the form U(P), we want

to express that two probability distributions cannot
simultaneously "resemble" a 6 distribution. Clearly,
when the above continuity requirement is not fulfilled,
we have not succeeded in this goal, since then it may still
be possible that one or both of the distributions are
sharply concentrated, without violating the bound on

their uncertainties.
Let us try to make this idea more concrete. We

confine the discussion to probability distributions on an

infinite discrete set, P=(P1,P2, . . . , ) with giPJ =1. A
series of such distributions P " may be said to converge
to the distribution P when

g i p,(") P i 0 f—or n (22)

P, ' =e/M, for j=2, . . . , M+ 1,

Pg
' =0, otherwise.

(23)

Obviously, P(' ) approaches the distribution (1,0,0,
0, . . . ) when e 0, M ~, irrespective of the route
along which this simultaneous limit is taken. However,
the value of H(P(' )) can be made to approach any
value (including infinity) depending on the chosen route.
Similar remarks may be made about —lnM, (P ' ) for
r (0.

On the other hand, for r & 0, —lnM, (P) does satisfy
the continuity requirement. To show this, observe that
the function f(x) =x'+' has a differential quotient
[f(x) f(y)]/(x —y),—which for r & 0, 0= x,y = 1, nev-

With this sense of convergence, it can be easily shown

that the Shannon entropy does not fulfill the continuity
requirement mentioned above, nor does any of the ex-
pressions —lnM, (P) for r(0. A simple counterexam-
ple will suffice. Take P ' as

p (e,M)

er exceeds (df/dx)„-1 =1+r .It follows that

i

(p(n))1+r (p )1+re ((I+ ) ip(n) p (24)

Summing over j and assuming the convergence (22), we
may establish the convergence of M„(P " ) to M, (P).

Thus, the general set of inequalities (11) and (13) pos-
sess one more advantage over the entropic uncertainty
relation (6) in the case where the observables have an
unbounded discrete spectrum, namely that they connect
two measures of uncertainty of which at least one
satisfies the continuity requirement.
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