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The one-dimensional, discrete Schrodinger equation is studied when the potential is allowed to take on
two values, V~ and Vg, which are arranged according to a generalized Fibonacci sequence. The problem
is reduced to a dynamical map for the traces of the transfer matrices which are given recursively by
Mt+& =Mt ~MP, where n is a positive integer. A related class of sequences whose transfer matrices obey
the recursion formula Mt~~ MP-~Mt is also investigated.

PACS numbers: 71.55.JV, 42.20.—y, 71.50.+t

The one-dimensional Schrodinger equation has stimu-

lated a considerable amount of work based on both nu-

merical calculations and renormalization-group tech-
niques to illustrate the scaling properties of the electron
states and eigenvalue spectrum. ' ' Our understanding
of this problem has indeed inspired further exploratory
work by theorists and experimentalists on systems whose

nonperiodicity is simulated by the requirement that a
material parameter follow the Fibonacci sequence with

the golden mean. " ' The work of Kohmoto, Kadanoff,
and Tang and Ostlund et al. is generally credited with

reflecting the quasiperiodicity of the system under inves-

tigation in a dynamical map approach. ' For the quasi-
periodic Schrodinger equation, it has been demonstrated
that the wave functions are critical and are neither local-
ized nor extended in a standard way. '

So far dynamical-systems techniques have been ap-
plied to only one example of a general sequence which

obeys an inflation scheme for the building blocks forming
a binary string. In this paper, we introduce and examine
two classes of dynamical systems for the traces of the
transfer matrices of a binary string, thus generalizing the
Fibonacci sequence. We obtain closed-form expressions
for the dynamical maps and their invariant manifolds.
According to the numerical calculations, one of the maps
has a large set of initial conditions for which the corre-
sponding orbits are bounded.

We now describe how to construct the first class of
quasiperiodic sequences by exploiting the algorithm
for generating a continued fraction (CF). ' Let
[bo, b~, b2, ) denote a simple CF where the b„denote
integers. If this CF is broken off after I terms, we have a
rotational approximation At/Bt where At and Bt are
coprime integers which obey the recursion relations
AI =6/AI —l +AI —2, 8I =$I8/ ) +8/ 2 with Ao =$0,
A —~=1, and 80=1, 8 ~=0. If bI is I independent, we

have 8I =AI —~. If bI =1, the CF has the golden-mean
value of g=(1+5'l )/2 and we obtain the well-known

recursion formula for Fibonacci numbers. The corre-
sponding Fibonacci sequence with the golden mean con-
sisting of building blocks A and 8 is generated as

S) = jAj, S2= (BAj, S3 = jABAj, . . . , where each term
is the sum of its predecessors. When bt =2, we obtain
the silver mean s =1+2'l and the sequence St =JAj,
S2 = {BAj, S3 = (ABABA j, . . . , where each term of the
string is constructed by our putting together two replicas
of the term immediately preceding it with its predeces-
sor, and left-right ordering is preserved. These two ex-
amples belong to a general class of nonperiodic but sub-
tle sequences which never quite repeat but obey the re-
cursion relation

SI+ &
=SI—&SI",

where l ~ 2 and n is a positive integer. We could now

apply the recursion relation in Eq. (1) to a model system
such as a superlattice and examine the plasmon spectrum
or the concentration of light within a multilayer sys-
tem. ' ' In order to illustrate the mathematical and
physical properties of this class of sequences by
dynamical-systems techniques, we choose to deal with
the simplest model for electronic properties of a one-
dimensional quasicrystal. This is the one-dimensional
version of an almost-periodic (discrete) Schrodinger
equation,

gI+ i

(2)

where yt denotes the wave function at the lth lattice site,
M(l) is a transfer matrix defined by

E —V(

0

and the potential VI takes two values V~ and Vg. Since
the generalized Fibonacci sequence is constructed by Eq.
(1), then Mt =M(Ft)M(Ft —1)—. . .M(2)M(1), where
FI is a Fibonacci number, obeys MI+ ~

=MI —~MI".

The energy spectrum E is obtained by our looking for
energies whose corresponding wave functions do not
grow as the number of lattice sites is inflated through the
generalized Fibonacci numbers. This means that the ei-
genvalues of MI must be complex with unit magnitude,
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as i ~. This condition for E to be in the energy
spectrum is transferred to the trace which must satisfy

i TrM( i
(2, since M( has unit determinant. The matrix

recursion relation for Ml leads to a discrete dynamical
system with the traces as elements. We now examine the
two cases corresponding to n =2 and n =3 in some detail.
If we define xl =

2 TrMl, calculation shows that the gen-
eralized Fibonacci sequence with the silver mean, i.e.,
n =2, has a recursion relation for x( that is given by the
following pair of equations:

xi+1 =4xltl+1 —xl-1,

tl+1 =Xl —1Xl

(4a)

(4b)

= (y(, 4y(z( x( y((4—y(z( x() z()—
T, in Eq. (6) has an invariant given by

I, =xl +yl +4zl —4xlylzl 1

(6)

with the initial conditions for the dynamical system given

by

x(= —,
' TrMg, xz= 2 Tr(M((Mg),

(5)
r 3 x 1 (x z 2 ) ——,

' (Vg —
V(( ).

Here Mz and M(( are the matrices in Eq. (3) with
V„=V~ and V((, respectively. If we define a three-
dimensional vector by r( = (x(,y(, z() = (x(,x(+ i, t(+ z), Eq.
(4) can be written as a nonlinear dynamical map

r(i( =T, (r()

generated by the recursion relation in Eq. (1) when n =3
has a mean value for the Fibonacci numbers F(+(/F(
which approaches a bronze mean P =(3+13'/ )/2. The
dynamical map for this case is given by

xi+1 =2xl ii+1 —gl+

gl+1 =2Xl —1Xl tl

tl+1 2xlgl+1 xl —1

(8a)

(8b)

(8c)

x(+1=(4x( 1)z( 2x(y(, y(+( =x(,

z(i1 =2x((x(i( —z() +y(.
(9)

The map in Eq. (9) has a conserved quantity given by
Eq. (7) with z( z(/2. Thus the class of Fibonacci se-

quences in Eq. (1) have the same invariant for n =1, 2,
and 3 and we believe that this is true for all values of n

Our numerical calculations also show that almost all or-
bits for T~ are strictly escaping. The rate of escape in-

creases with the index n We w. ere able to identify a six-

cycle and two-cycle orbit for the map T~. Our con-
clusions are that the quasiperiodic sequences in Eq. (1)
would not easily show the critical effects in the proposed
experiments since there appear to be so few bounded or-

where x1 and x2 have the same values as for the silver-

mean map and g3 =2x &xz —x
&
+ (V(( —V~ )/2. By the

definition of a three-dimensional vector r(=(x(,x(-(,
g(i1), Eqs. (8) are alternatively expressed as r( =T(((r()
where T~ is a nonlinear map given explicitly by

= —,
' Tr[M(, M( (7)

These remarkable results show that the points obtained
from Eq. (6) by successive iterations are actually
confined on the same two-dimensional manifold (for a
given value of I, ) as the dynamical system for the Fi-
bonacci sequence with the golden mean. As a matter of
fact, for the initial conditions in Eq. (5), we find that I,
is given by (Vz —V(() /4. Almost all orbits on the mani-
fold (see Fig. 1 of Ref. 17) escape to infinity along one of
the four parts which extend from the middle portion.
The rate of escape of these orbits is greater than for
those unbounded orbits for the map with the golden
mean. The scale transformation in Eq. (6) has a two-

cycle orbit A (0,0,a/2) B(0,0, —a/2) A where
a=(I„+1)'/ and a four-cycle orbit C(0,a,0)~ D(a,
0,0)~ E(0, —a,0) F(—a,0,0)~ C. The wave
functions governed by these orbits are self-similar and
therefore intermediate between a localized and extended
state. Linearization of T, and T, about their fixed
points yields scaling exponents for the energy spectrum.
There are three major bands: The central part scales
with an eigenvalue of T and the two outer regions scale
with an eigenvalue of T .

The incommensurate system whose building blocks are

—j —05 0

FIG. 1. An aperiodic orbit for the copper-mean map in Eq.
(11) when y yi —2x| for an initial point with x|=yi =1599/
1699. When the rounding error is made sufficiently small, all
points on the orbit lie on a closed curve. Otherwise, some of
the points obtained during the course of iteration would not be
found on this curve.
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—05 0 05

FIG. 2. The set of initial points with coordinates (xl,yl)
which yield bounded (cyclic or aperiodic) orbits for the map in

Eq. (11) with y yl —2x1. For the mesh size chosen, there are
16806 points in this diagram which do not escape after 2000
iterations.

bits.
The quasiperiodicity was then generated by the con-

struction of a separate class of sequences given recursive-

ly by

SI+i =SI"-iS (10)

xi+& =2(2xlz-, —1»(+ y,

where y=x2 —2xi. For the sequence beginning with

Si =jBj, Sz=fBAj, S3=fBBBAj, . . . , the map is also
given by Eq. (11) except that y= —1. The map in Eq.
(11) has been studied numerically for various values of
xi and x2. A more detailed study of the map with re-
gards to the stability of the fixed points and the possible
existence of attractors is worthwhile undertaking. These
results will be published elsewhere. Our conclusions for
the present study are as follows.

where n 2, 3, . . . , so as to see whether this rearrange-
ment of the generalized Fibonacci series would improve

the number of bounded orbits for a chosen value of n.

For the sequence in (10), the number of building blocks
is fi where f1+i =nfl i+f1. When n=2, we obtain

fi+ilfi 2 as I ae. We refer to this ratio as the

copper mean. The recursion relation for half the trace
of the transfer matrices given recursively by MI+ i

=MI |Mi has been evaluated for two sets of initial con-
ditions. For a system of A's and 8's with S|=18j,
Sz {Aj,S3 {BBAj, . . . , we obtain

The map in Eq. (11) is two dimensional with

(xI+i,yi+i) =(yI, 4xI'yI 2—yi+ y)

The initial points (x|,y|) for which the orbits of the map
are bounded are very large in number. This is in sharp
contrast to the class of sequences in Eq. (1) where the
closed (periodic) orbits are isolated and appear to be
only few in number. An example of a bounded orbit for
Eq. (11) is shown in Fig. 1. Figure 2 shows those initial
values for which the orbits are bounded. Furthermore,
each bounded orbit of Eq. (11) has a unique initial point
when y is energy dependent. The map for which y= —1

also has a dense set of initial points which yield bounded
orbits. As the index n increases for the class of se-

quences in Eq. (10), we anticipate that the unshaded re-
gions in Fig. 2 corresponding to escape orbits become
smaller in area. These results suggest that the concen-
tration of light in layered structures would be more easi-

ly observable when the quasiperiodicity is simulated by
Eq. (10). Our analysis shows that the sequences in Eqs.
(1) and (10) are the reverse of each other and this obser-
vation is the main result of this paper.

When y x2 —2xl, the map in Eq. (11) has a two-

cycle orbit given by ( —,', —1) ( —1, —,
' ). However, the

corresponding matrices are four-cycle. The map also has
a three-cycle orbit given by ( —,', —

& ) ( —4, —1)
( —1, —,

' ) and the corresponding matrices are six-

cycle. The feature that makes the map in Eq. (11) in-

teresting is that there appears to be at least one periodic
orbit for every cycle.
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Calculations have shown that the off'-diagonal version of the
quasiperiodic Schrodinger equation which is given by

~l+ I gl+ I + il Pl —I Egl

has the same trace map as the diagonal version in Eq. (3) when

the hopping matrix elements jtij have two values r~ and ta
which obey the Fibonacci sequence with the golden, silver,
bronze, and copper means, respectively.
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