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Low-Temperature Behavior of Two-Dimensional Quantum Antiferromagnets
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Recent neutron-scattering data for the spin-correlation length in La2Cu04 can be fitted quantitatively
with an analysis of the quantum mechanical nonlinear o model in two space dimensions. The coupling
constant must be chosen in the range where an isolated Cu02 layer has antiferromagnetic order at T =0.
The parameters are consistent with the spin-wave theory for the nearest-neighbor spin- 2 Heisenberg an-

tiferromagnet on a square lattice.

PACS numbers: 75.10.Jm, 67.40.Db, 74.65.+n, 75.50.Ee

Recent neutron measurements by Endoh and co-
workers' in single-crystal La2Cu04 have added a new

dimension to the current excitement surrounding high-
temperature superconductivity. Although the sample
itself is not superconducting, it exhibits novel two-

dimensional antiferromagnetic behavior. The energy
scale of spin fluctuations is large, and it appears that
quantum fluctuations play an essential role. Deeper un-

derstanding of this magnetic behavior may be important
to the understanding of the possible new mechanism in-
volved in these superconducting systems. In this paper,
we present a low-temperature renormalization-group
analysis which is in quantitative agreement with the neu-
tron experiments.

Qur model is essentially a (d+1)-dimensional non-

linear cr model, where the thickness in the extra dimen-
sion (imaginary-time direction) is proportional to the in-

verse temperature P of the system. The dimensionless

coupling constant go of the model is chosen to reproduce
the results of the zero-temperature spin-wave theory for
the s = —,

' nearest-neighbor Heisenberg model in d =2 di-

mensions. (With this choice of go, the two-dimensional
system has a nonzero staggered magnetization at T 0,
although it is reduced considerably by quantum fiuctua-
tions. ) There is then a single dimensional parameter, the
spin-wave velocity c, which we have chosen to be
Ac=0.425 eV A, close to the lower bound quoted in

Ref. 1. The computed correlation length g(T) is then in

excellent agreement with the data quoted in Ref. 2 for
their "best" sainple (i.e., the sample with highest Neel
temperature, TN 195 K), in the entire temperature
range TN & T+550 K. The occurrence of long-range
antiferromagnetic order for 0 & T & TN is attributed to
a very weak coupling between the Cu planes which we
estimate to be of order 10 times smaller than the cou-
pling within the planes. Such a small interlayer coupling
has little effect on the spin correlations for T & TN, and
the staggered magnetization observed' at low tempera-
tures should be very close to the staggered magnetization
of an isolated layer at T=0. Indeed, the largest stag-
gered magnetizations observed in La2Cu04 are close to
the spin-wave estimates of =0.6pB per site.

If the coupling constant of the (2+1)-dimensional tT

model is increased (e.g. , as a result of frustrating next-
nearest-neighbor interactions), one can enter a quantum
disordered regime (go & g, ), where the isolated layer has
only finite-range spin correlations at T 0 similar to the
resonating valence-bond state in the version proposed by
Kivelson, Rokhsar, and Sethna. If one chooses go=g„
the model at T=O has spin correlations that fall off as
an inverse power of the separation, resembling somewhat
the resonating valence-bond state espoused by Anderson
and others. However, we are unable to obtain a
reasonable fit to the neutron-scattering data if we choose
gon g, so that the two-dimensional system lacks long-
range magnetic order at T=0.

The effective Euclidean action of the nonlinear e mod-
el may be written in the form '

2

l't 'S.a= „di& d'x ~V a~'+
2h ~o C

dg/dl = (1 —d)g+ —,' Kdg coth(g/2t),

dt/dl =(2 d)t+ —,
'

Kdgt co—th(g/2t).

(2)

(3)

where 0 is a three-component vector field with the con-
straint

~
0

~
=1, the space integrals are carried out up to

a maximum wave vector A, r is the imaginary time vari-
able, p, is the bare spin stiffness constant on the length
scale A, and c is the spin-wave velocity, which is not
renormalized at long wavelengths in this model. The
combination p, c =Z~ may be identified as the local
uniform magnetic susceptibility, in the direction perpen-
dicular to the local staggered magnetization (in units
where 2@a/h =1)." The average of 0 in this ensemble
is proportional to the staggered magnetization. For con-
venience, we define a dimensionless coupling constant go
by go=bc/p, =goA'

Renormalization-group equations for this model can
be derived with the methods described by Hertz, '

Young, ' Polyakov, ' and Nelson and Pelcovits, ' and
are (up to one-loop order)
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Here e' is the length rescaling factor, Kd ' =2
xn"'r(d/2), and the initial values of the dimensionless
coupling constant g(l) and temperature scale t(l) are
gp=hcA '/p, and tp=kaTA /p, . To describe a
square lattice with lattice constant a when d =2, we shall
take Aa equal to (2rr) 't . This choice conserves the area
of the Brillouin zone for the antiferromagnetically or-
dered state. Note that g/t =ljhcA is the dimensionless
"slab thickness" of (1) in the timelike direction, and
obeys the simple recursion relation d(g/t)/dl = —g/t.

The renormalization-group flows show that at T=0
there is a nontrivial fixed point at g =g, for d & 1. This
describes a quantum phase transition with the critical
exponents of a classical (d+1)-dimensional Heisenberg
model. For d ~ 2, there are no finite-temperature fixed
points, while for d & 2, there is a fixed point describing a
classical finite-temperature d-dimensional ordering tran-
sition. In this paper we shall concentrate on d=2. At
T=O, Neel order persists up to g„where g, =4m from
Eq. (2); for g & g, there is a quantum disordered phase
at T =0 with a gap h, in the excitation spectrum.

Although the system is disordered at all finite temper-
atures, we can nevertheless identify three regions sepa-
rated by crossover lines as shown in Fig. 1. The central

quantum critical region is controlled by the T=O fixed
point at g, . In the renormalized classical region, for

g &g„ the correlation length ultimately diverges ex-
ponentially fast as T 0. ' Specifically, we shall find,
within our approximations,

09(hc/ kTa)exp(2', /kaT),

where p, is the actual spin-stiffness constant at T =0, re-
normalized by the quantum fluctuations. Since p, will

vanish when go g„ it is clear that proximity to the
T=O fixed point at g, can greatly reduce the rate of
growth of g. The prefactor (hc/kaT) in Eq. (4) is the
thermal de Broglie wavelength of the spin waves (divided

by 2rt). In the quantum disordered region (g & g, ) the
correlation length becomes temperature independent as
T 0, and is given by g(T =0) = (gp/g, —1)
Our one-loop calculation yields vd+ ~

=1, instead of
vd+~ =0.7, the correct result for Heisenberg models in

2+1 dimensions. Precisely at g„ the system will behave
like a three-dimensional classical spin system at its criti-
cal point, for length scales less than the effective "slab
thickness" Phc. The order will be broken up by two-
dimensional fluctuations on larger scales, and so we con-
clude that g(T) = hc/kaT, for gp =g, .

Next we consider the crossover lines in Fig. 1. For
gp & g„T„=A/k a ~ (gp/g, —1 ) "'. For gp & g„we ob-
tain the crossover temperature by first defining' a corre-
lation length (&= (hc/p, )'tt 'l which separates, at
T =0, the long-wavelength antiferromagnetic magnons
from the shorter-wavelength critical fluctuations impor-
tant near g, . This gives T„' —(1 —gp/g, )" +'

by our
equating g~ to the thermal length hc/kaT.

t =27T (g/gc-1)

rJ' r

—QUANTUM DISORDERED

/' i t-(g/g -1)c

QUANTUM CRITICAL

:RENORNAL I2ED
- CLASSICAL ~ g - - - o+I

'i& —«g/gc )

~ NEEL L.INE t = 2~(1- 0/gc)

(2)

t = t/2'

FIG. 1. Crossover phase diagram for d=2. vd+I=0. 7 for
d=2. g, is the critical point of the (d+1)-dimensional non-
linear cr model.

The correlation length can be calculated from our re-
cursion relations by integration of them until the renor-
malized correlation length g(l) =e 'g equals the lattice
constant. Both in the renormalized classical and in the
quantum critical regions, where t(l) grows faster than
g(l), it suffices to choose l' such that t(l ) =2rr. (Our
results depend only weakly on the precise matching con-
dition; see below. ) Using the exact solutions of Eqs. (2)
and (3) for the case d =2, we obtain for g =ae'

' =(tp/agp)sinh '[sinh(gp/tp)exp[ —(1 —tp)/tp]j,

(5)

where gp =gp/g„and t p
= t p/2rt. The prefactor t p/ag p

=(2/n)'t (knT/hc) is not explicitly dependent on a.
Other choices of the matching condition would change
the coefficient (2/rr) 't . At low temperatures, for gp & 1,
Eq. (5) becomes equivalent to Eq. (4), with p, =p,
&& (1 —gp), which is the renormalized spin stiffness con-
stant at T =0, within the one-loop approximation.

In the quantum region g(l) grows faster than t(l),
and it is convenient to choose l such that g(l*) =2; i.e.,
g(l ) =2g, . This yields an implicit equation for e' . As
tp 0 (gp & 1) ( approaches its T =0 value with correc-
tions of order exp( 5/kaT). —

To proceed further, we must determine the coupling
constant go. If we choose go & 1, and set T=O, then the
spin stiffness p, and the magnetic susceptibility L&
=p,c approach finite values in the long-wavelength
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limit. From the defining relation for g, we have then, for
d=2,

= lim [hAe '/cg(l)].I~ oo

If one integrates Eq. (2), at T =0, one finds that
g(l ) =4rrgpe '/[1 —gp(1 —e ') ]. Hence, we obtain
gp=(1+4zX&c/AA) '. For a spin-s antiferromagnet
on a square lattice, with nearest-neighbor exchange con-
stant J, one finds X~—:ft Zx(s)/8Ja, and hc =JS
x JsaZ, (s), where the correction factors are given by
Z& = 1 —0.552/2s, and Z, = 1+0.158/2s. Oguchi finds
that the 0((1/2s) ) term in Z, is small even for s = —,',
and we have made preliminary estimates which suggest
that the same is true for Z&. Having chosen
A (2n) '~ /a, we find that gp =(1+vVZ&Z, /2)
=0.685.

The value gp & 1 implies that, in the absence of impur-
ities or other sources of frustration, experiments on
La2Cu04 should take path (1) instead of path (2) in Fig.
1; i.e., the ground state of an isolated Heisenberg layer
is Neel ordered.

Figure 2 shows our fits to the experimental data for
the inverse correlation length. With gp 0.685 (the
spin-wave result) the "best fit" is obtained with hc
=0.425 eV A; the choices hc =0.45 eV A and hc =0.4
eV A. bracket the experimental uncertainties. We could
have obtained comparable results directly from Eq. (4),
using the formula p, =bc Zs, Zz/a J8. We can also fit
the data allowing (20-30)% variations in Z&, and some
further variation in Ac. In Fig. 2, we show our fit for
bc=0.8 eV A and gp=0. 85. ' A fit for gp 1 is also
shown in Fig. 2. In this case a rather large value for Ac
(&2 eV A) is necessary to obtain the overall magnitude
of g as seen in the experiment. However, the tempera-
ture dependence, ( '~ T, would disagree with the exper-
iment. The disagreement is worse for gp & 1.

We obtained g by setting t(1*)=2m. If instead we
used the matching condition t(l ) =4m we could fit the
data with gp=0. 685 and bc=0.36 eV k On the other
hand, for t(l ) =x we would need hc 0.58 eV A with
gp=0. 685. Although we have not attempted detailed
calculations of the staggered susceptibility X,t, it is easy
to see that kaTX„(T)-g ""' when g=l and X,t(T)
—exp[4rrp, /kaT] for g & l.

Calculations beyond one-loop order were carried out
by Brezin and Zinn-Justin' for the classical model at
d=2. A similar analysis of our quantum model in the
renormalized classical regime suggests that in the limit
T 0, for fixed gp & 1, the pre-exponential factor in Eq.
(4) for g will be relaced by constxhc/2rrp, . Excellent
fits to the data can be obtained with this form, e.g., with

2rrp, =1175 K, corresponding to hc =0.67 eV A. in the
spin-wave theory, and const=0. 6. Moreover, since the
experimental data are all within the renormalized classi-
cal regime of Fig. 1, our analysis should not be seriously
affected by the incorrect value of vd+~ (which deter-

0.03—

(Ac=0.425eV-A, gp 0685)
II

0.02—
lac = 2.2ev-l, go= 1 )

0.01—

c=0,8eV-A, gp=0. 85)

I I I I I

1CC 2CC 3CG 4CC 500 600
T(K)

mines the shape of the crossover line) inherent in a one-
loop calculation.

The experiments also show a transition to three-
dimensional Neel order at TN =200 K, which is presum-
ably triggered by a weak exchange coupling J' between
the Cu02 planes. The transition should occur when
J'(M /Mp )(& /a ) = kaTN, where M/Mp is the reduc-
tion in the T =0 staggered magnetization relative to the
Neel value induced by 2D quantum fluctuations at
length scales shorter than the in-plane correlation length

Because the magnetic eigenvalues in one-loop low-

temperature renormalization groups are rather inaccu-
rate, ' we estimate M/Mp from M =p„which is a val-
id approximation if rid+~=0. ' Taking gp 0.685, we
find M /Mp = I —gp=0. 315. (Alternatively, one could
use the estimate of spin-wave theory for an isolated layer
at T=O, which is M /Mp =0.36. ) Using the experi-
mental results TN =200 K and ((TN) = 200a, we find
J'=0.015 K. A simple mean-field treatment shows that
such a small value of J'=2x10 J has a negligible
eff'ect on our estitnates for p„Z&, and M/Mp at T=0,
except very close to g, .

If we had assumed gp~ 1, so that the isolated layer
has M =0, then it would have been necessary to choose
a very large value of J', comparable to J, in order
to account for the actual staggered magnetization in

La~Cu04. [Scaling predicts that (M/Mp) a: (J'/
J) "'+' "'+'), for gp=l. ] A large value of J' is

1+gdl )/(4 2gg+I

inconsistent with the fact that the observed spin correla-
tions are two dimensional for T & TN.

We close with a word of caution regarding our com-
parison between theory and experiment. Because the
Neel temperature of La2Cu04 is extremely sensitive to

FIG. 2. Inverse correlation length as a function of tempera-
ture. The solid curve is our best fit to the data (Ref. 2) (solid
circles). The dashed lines are attempts to fit the data with oth-
er values of hc and go.

1059



VOLUME 60, NUMBER 11 PHYSICAL REVIEW LETTERS 14 MARcH 1988

impurities and defects (e.g., oxygen vacancies), it might
be incorrect to ignore the efI'ects of impurities even in the
best samples which have been studied so far. Quenched
impurities become defect rods in the timelike direction of
the effective action [Eq. (I)] which destroys the Lorentz
invariance of the model. We expect that at the quantum
transition point there will be new critical exponents dom-
inated by randomness. '
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