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Tilted CO on Clean and Potassium-Covered Ni(110): Adsorbate Orientation
from Polar-Angle X-Ray-Photoelectron Diffraction
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Carbon monoxide adsorbed on clean and K-covered Ni(110) surfaces is studied by polar-angle x-ray-
photoelectron diffraction to determine the C—O bond orientation relative to the surface normal. At 300
K CO adsorbs perpendicularly on clean Ni(110) with the C down, while at 120 K a high-coverage layer
forms with CO tilted +21° from normal in the [001] azimuth. The coadsorbed K/CO layer at 300 K is
a mixture of tilted and perpendicular CO, the former having a tilt angle of 32° in the [001] azimuth.
This tilted CO is due to the K interaction and is more strongly adsorbed than perpendicular CO.

PACS numbers: 61.14.Hg, 79.60.Gs, 82.65.Jv

Marked changes in the surface chemistry of CO ad-
sorbed on a transition metal accompany alkali-metal co-
adsorption.! While of fundamental interest, they are
also important to an understanding of alkali-metal pro-
motion in heterogeneous catalysts.>> An obvious first
step in our understanding of what happens to CO in the
presence of an alkali metal is to know its orientation: Is
it adsorbed in the usual perpendicular geometry with the
C down? Some workers have interpreted their experi-
ments in terms of alkali-metal-induced orientation
changes,*® but direct measurements have mostly
found perpendicular CO.%'? One electron-stimulated-
desorption ion-angular-distribution study found tilted
CO in the presence of Na on Ru(001), but only at 80 K
and for saturation CO coverage.* At other temperatures
and coverages only perpendicularly adsorbed CO was
found. It is unclear whether such orientation changes
are more general, and how they relate to the alkali-
metal-CO interaction and substrate structure.

A promising system for the study of this problem is
CO + K on Ni(110). An fcc (110) surface is atomically
rough, leading to more intrinsic variation in adsorption-
site geometry than on, e.g., an fcc (111) surface. For the
latter, the high symmetry of adsorption sites might miti-
gate the perturbation of a coadsorbed alkali metal.®!°
For example, the adsorption sites for K on Ni(110) are
the troughs between atomic rows in the [1T0] direc-
tion, !> while CO on the clean surface adsorbs in on-top
and short-bridge sites atop the rows.'*!> The (110) sur-
face asymmetry does in fact lead to a tilted CO species
even on the clean surface at low temperature and high
coverage.

We studied this system using x-ray-photoelectron
diffraction (XPD), which relies on the highly forward-
peaked scattering of fast photoelectrons (kinetic energy
> 300 eV) by nearby atoms.'® The method pinpoints
the bond axis of CO by sensing the C-1s intensity in-
crease due to scattering from the O. Typically, the
forward-scattering peak is narrow enough (ca. 20°) to

determine precisely the molecular-bond axis, and single-
scattering calculations adequately describe the pro-
cess.>1718 We observed perpendicular and tilted CO on
both clean and K-covered Ni(110). The results show for
the first time that K-affected, strongly adsorbed CO on
this surface can be definitely assigned to a species tilted
32° from normal along [001] directions.

The measurements were done under ultrahigh vacuum
(UHYV) on a well-characterized Ni(110) crystal. The x-
ray source (1253.6-eV photon energy) and angle-re-
solving hemispherical analyzer are fixed; we vary the
photoelectron polar angle = 60° from normal (§=0°)
by sample rotation about an axis in the plane defined by
incident photons and detected electrons. Zero of 6 is
defined by the symmetry of a substrate core or Auger
level. Two azimuths 90° apart were measured corre-
sponding to the electron parallel momentum in either the
[001] or the [110] direction. We improved the signal-
to-noise ratio considerably relative to our earlier work®'®
by multiple scanning of the 120° polar-angle range in 1°
steps. At each angle the core-level intensity is taken as
the net peak height above a linear background deter-
mined by measurement of either side of the peak. Potas-
sium dosing is from an in situ source (SAES Getters,
GmbH) with the relative coverage determined from
K/Ni Auger-peak ratios, with the assumption of room-
temperature saturation at 6x=0.53 (6.04x10'* K/
cm?).13

Results for K and CO adsorbed separately at 300 K
are shown in Fig. 1. Here and in other figures we plot
the net peak height times cosf to equalize the intensity
increase with 6 for a surface species, ' and normalize the
spectra to 1.0 at —60° to facilitate comparison. Thus,
for no forward-scattering enhancement, and neglecting
large-angle scattering events from the substrate, we ex-
pect a constant adsorbate core-level intensity versus 6.
The lines are computer-generated smoothings using an
average window 8° wide. Error bars (statistical counting
noise) are shown near 0°. In Fig. 1(a) for K 2p (both 3
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FIG. 1. (a) Scans of K 2p intensity for K adsorbed alone;
both azimuths are shown. For [001], 6x =0.53; for [110], 0.42.
(b) Similar scans for the C 1s level of CO adsorbed alone. For
both parts 7=300 K.

and 3 levels show the same structure) the intensity is
nearly constant up to ca. %+ 50°, where an intensity de-
crease due to the finite sample width sets in. No for-
ward-scattering enhancement is seen, showing that the K
is distributed in a single layer. The formation of a
second layer would lead to structure due to the forward
scattering of K 2p photoelectrons of the first layer by
atoms in the second layer.

In contrast, the C 1s level from a saturation CO layer
has a large (ca. 50%) enhancement at §=0° in both az-
imuths, as well as smaller first-order diffraction peaks
near *40° for [110] [Fig. 1(b)]. The O 1s level from
such a layer shows no enhancment [i.e., a structure simi-
lar to Fig. 1(a)l. These spectra are characteristic of
vertically adsorbed CO with the C end of the molecule
bonded to the metal. The 27° width of the [110] peak
restricts the polar tilt to less than about 5°.%!7 This
width is affected by the Ni—CO bending vibration.
From comparing the peak widths for [001] and [110] we
see that this bending mode is very asymmetric for the
CO adsorption sites atop the rows. 2

At 300 K the saturation CO coverage is ca. 70%, but
below 160 K a complete monolayer can be adsorbed in a
(2x1) structure having p2mg symmetry. Several
groups?!7?® have concluded that the CO tilts in [001]
directions, with electron-stimulated-desorption ion-ang-
ular-distribution measurements setting the angle at
19°.232% This tilt arises from repulsion between O ends
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FIG. 2. Saturation CO adsorption at 120 K: (a) Carbon lIs
scans in both azimuths are compared to (b) single-scattering
calculations.

of the molecules, adsorbed only 2.49 A apart on the
atomic row.?’ Figure 2(a) shows results for saturation
CO at 120 K. Two well-resolved forward-scattering
lobes appear at *21° for [001]. Again, the enhance-
ments are restricted to the C ls core level. This agrees
well with single-scattering calculations [Fig. 2(b)] for
CO adsorbed with a 21° tilt in [001] directions and tak-
ing account of CO-metal bending vibrations (rms dis-
placement 8°).>!7 More enhancement is predicted than
observed [note the scale change for the ordinate in Fig.
2(b)], partly an effect of the plane-wave assumption used
in the calculation,?® but the shapes of the curves agree.
There is also good agreement with the earlier elec-
tron-stimulated-desorption ion-angular-distribution re-
sults?>2* and with recent XPD experiments of Baskotte,
Neumann, and Freund.?® The [110] scan shows a small
peak at 0° which is not due to a remnant of vertically
adsorbed CO, but rather to the tails of the forward-
scattering cones (widths ca. 22°). These enter the
analyzer parallel to the entrance slit, giving an effectively
larger angular acceptance in this geometry, and leading
to the worse agreement with theory for [110]. Agree-
ment for both azimuths is improved by our correcting for
the “instrument function” [i.e., Fig. 1(a)l, but this does
not change the tilt angle. Further calculations showed
that 1° changes in the mean tilt angle could be dis-
tinguished for these data [Fig. 2(a)l.

Figure 3 shows CO + K coadsorption results for 6x
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FIG. 3. Coadsorption (CO + K) at 300 K: C 1s XPD scans
(a) before and (b) after heating to 485 K. Potassium cover-
ages are ¢ =0.16 for [001] and 0.19 for [110].

=0.16 ([001]) and 0.19 ([110]) at 300 K. Whitman
and Ho?° studied coadsorption near this 6x range with
thermal-desorption and high-resolution electron-energy-
loss spectroscopy. They find a strongly affected CO
species with a lowered C—O stretch frequency (1660
cm ~!) and an increased desorption temperature, mixed
with a less-affected species. The latter is selectively
desorbed by a brief heating to 485 K. The scans in Fig.
3(a) are much different from those for the clean surface
[Fig. 1(b)] and show tilted (£ 32°) and vertical CO.
Vertical CO is especially clear in the [110] scan; the 32°
tilt angle is apparently large enough to make tilted CO
invisible in this azimuth. This absence of any nonverti-
cal enhancement in the [110] scan suggests that the tilt
is limited to [001] directions. Scans in Fig. 3(b) taken
after heating of the coadsorbed layer to 485 K show that
the heating desorbs all vertical CO. Tilted CO is thus
the K-stabilized species observed in high-resolution
electron-energy-loss spectroscopy and thermal-desorption
spectroscopy, having a weakened C—O bond and an in-
creased adsorption energy. As on the clean surface, the
O 1s level shows no forward-scattering enhancement:
The C end of the molecule remains bonded down. Simi-
larly, K 2p levels show no change from Fig. 1(a) after
CO adsorption, making adsorption atop K wunlikely.
Mixtures of perpendicularly adsorbed and vertical CO
were also observed at other K coverages, with the largest
amount of perpendicular CO occurring for small 6.
While these measurements cannot determine the ad-

sorption site, they do suggest some possibilities. For
strongly affected CO, Whitman and Ho>® thought a
short-bridge site was likely, next to a K in a fourfold hol-
low. One can then imagine the CO tilt arising through
electrostatic attraction between the (negative) O end of
the molecule and a partially ionic K*. Recent reports®'
of a K-induced “missing-row” reconstruction of Ni(110)
for Ok <0.31 suggest an alternative. This reconstruction
exposes (111) “microfacets” at 35.3° to (110) (with the
assumption of no relaxation). If the reconstruction is not
lifted by CO adsorption, an attraction between K in the
troughs and CO might move the molecule from the
short-bridge site to the microfacet. Here its bonding
geometry would be similar to that on a (111) surface,®!°
i.e., perpendicular to the microfacet, yielding nearly our
observed tilt angle.

In summary, we have observed tilted CO induced by K
coadsorption and for the first time associated the tilted
species with alkali-metal-induced thermal stability.
This contrasts with previous reports of alkali-metal-
induced CO orientation changes*® in which the effect
was very sensitive to CO or K coverage. The tilt, 32° in
[001] directions, is reminiscent of the (2x1) p2mg CO
structure, from which, however, the coadsorbed species
can be clearly distinguished. Since CO adsorbs vertical-
ly in other coadsorbed systems,’'? the special geometry
of the substrate plays an important role. These results il-
lustrate the capabilities of XPD in highly accurate deter-
minations of the adsorbate structure.

We thank K. Diickers, G. Pirug, and K. C. Prince for
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