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Forced Organization of Flute-Type Turbulence by Convective Cell Injection
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Nonlinear interactions between flute-type turbulence and an externally excited convective cell in a
strongly magnetized plasma are investigated. During the interaction the azimuthal-mode-number spec-
trum of the turbulence is deformed and a broad spectrum evolves, indicating an inverse cascade. As a
result of a modification in phase and amplitude of the fluctuations, an organized structure is created in

the turbulence. The macroscopic behavior is well explained by a Van der Pol-type equation.

PACS numbers: 52.35.Mw, 52.35.Fp, 52.35.Ra

The self-organization process in turbulent and linearly
unstable systems is one of the most interesting and im-

portant phenomena in nonlinear plasma dynamics as well
as in fluid dynamics. ' It has been demonstrated for
two-dimensional flows, for instance, that the situation
consisting of very many vortices is deformed through a
coalescence of these vortices to create ultimately a
large-scale structure, indicating an inverse cascade in the
turbulence. In distinction from these spontaneous or-
ganizations, we here report a forced organization of tur-
bulence in a plasma, accompanied by an inverse cascade.
This process is the result of a nonlinear interaction be-
tween spontaneously generated turbulence and an exter-
nally excited convective cell. '

The experiment is carried out in a linear machine,
where a plasma is produced by surface ionization of cesi-
um on a hot tantalum plate of 3 cm diam. The plasma
column is confined by an axial magnetic field Bo (=0.35
T). Typical parameters are as follows: central plasma
density no=10 cm, and temperatures T, = T; =0.2
eV. Outside the central plasma column, a residual or
scrapeoff plasma layer exists with the same temperature
but a reduced plasma density. A convective cell is ex-
cited by our applying a positive square-wave pulse of
20-ps duration to an 8-mm-diam disk which is placed in

the residual plasma outside the main plasma column.
The repetition rate of the pulses is 50 Hz. Between the
pulses the bias of the disk is equal to that of the cold end
plate ( —15 V).

In the residual plasma, fluctuations always appear,
which show many features of a flute-type instability. '

The driving mechanism for the instability which gives
rise to these oscillations was identified as the azimuthal
Kelvin-Helmholtz, or velocity shear, instability; see Ref.
6. Fluctuations in floating potential were measured by
two probes with exposed spherical platinum tips of 1 mm
diam. High-input impedance amplifiers (100 MQ)
with bandwidth 300 kHz were placed in the intermediate
vicinity of the probes. Probes and detecting circuits were
tested by measurements of grid-excited ion acoustic
waves. Figure 1(a) shows a typical frequency spectrum
of the potential fluctuations. We find that the fluctua-
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FIG. l. (a) Frequency spectrum of the spontaneously excit-
ed fluctuation. (b) Temporal variation of the averaged poten-
tial (p) at difl'erent azimuthal positions 0 with r =1.8 cm. A
convective cell is injected at t =0. The exciter disk is centered
at 0=0.

tion around fo=5.2 kHz is associated with an m =2 az-
imuthal mode number and propagates approximately
with the local Ep&&Bp velocity, where Eo is the radial
electric field at the plasma edge. This result was explic-
itly confirmed by the measurement of Eo. By changing
the potential gradient in the residual plasma we may also
obtain a broadband fluctuation. Here we consider
mainly the narrow-band case.

In order to investigate the interaction between the
background turbulence and a convective cell, we inject a
positively polarized cell into the turbulence. The injec-
tion takes place at a random phase relative to the spon-
taneous fluctuations. The potential fluctuations are mea-
sured by a probe at different azimuthal positions 0 and
are eventually averaged by a boxcar averager. Figure
1(b) shows a typical evolution of the averaged potential
(p) with 8 as a parameter. Here the radius of the cir-
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cumference for the measurement is a =1.8 cm and the
exciter disk is placed at 0=0. Before the cell injection,
t & 0, no structure appears and the value of ((tI) is zero.
After the cell injection, t & 0, however, there appears an
organized structure which propagates azimuthally. This
organized structure lasts longer than the cell lifetime of
approximately 200 ps as described in Ref. 3. Its velocity
is about 3.3x10 cm/s, which is almost the same as the
velocity of the background fluctuations.

The effect of the cell on the turbulence was further ex-
amined by use of the spontaneous fluctuations as a trig-
ger of the entire measuring system. For changing injec-
tion time of the cell within one wave period, the potential
fluctuations are measured at the fixed position 8=90'.
The results are shown in Fig. 2(a), where arrows indicate
the times when the cell is injected. The top trace shows
the fluctuation without cell injection. Soon after the in-

jection, the amplitude and the phase of the inherent wave

are deformed, but eventually the inherent perturbations
reappear and continue again long after the cell decay,
but with a phase locked by the injected cell. In order to
estimate the phase shift of the fluctuation, the evolution
of the peaks of the signals is plotted in Fig. 2(b) with cir-
cles. The top trace corresponds to the fluctuation
without cell injection. Two parallel lines with narrow
spacing show the time, phase and interval of the applied
pulse for the cell excitation. Note that the results cannot
be explained by a simple linear superposition of the
background fluctuations and the injected cell. If all the
signals in Fig. 2(a) are shifted in time to have the same
cell injection time and added, there would appear a finite
signal after the cell injection, t )0, but nothing for
t «0. This would agree with the observations in Fig.
1(b).

The spatial potential distribution in the 8 direction is

analyzed numerically to obtain a mode-number spec-
trum. Figure 3 shows the evolution of the intensities of
each azimuthal component. The m=2 mode exists in

the plasma before the cell injection at t (0 as discussed
previously. The mode grows at first after the injection,
but soon afterward it decays, and the lower mode of
m=1 becomes strong after a time t =150 ps. Subse-
quently, this mode also decays and then the lowest mode
of m=0 grows and dominates for 190 Itts & t & 230 ps.
As the lo~er modes decay, the initial state with m=2
reappears for t &450 ps. The results in Fig. 3 are ex-
plained in the following way: The inherent turbulent
structure (m =2) coalesces with a convective cell to gen-
erate a larger spatial structure, i.e., an inverse cascade
from the higher mode to the lower mode. ' This process
continues during the cell lifetime, and during this time a
very broad spectrum is realized, as shown in Fig. 3
(t =200 Itts). After the decay of the cell the initial
mode reappears. It is important that because of the in-

teraction, the phase and amplitude of the inherent fluc-
tuation are altered and as a result an organized structure
is formed.

To explain the phase locking, the following simple
model is considered. The narrow-frequency-band oscil-
lations in the plasma appear as a linearly growing mode,
with a nonlinear saturation mechanism. A theoretical
model based on the Van der Pol equation is well estab-
lished for such plasma phenomena. In particular, it is

proposed by Hioki and Okuda for conditions very simi-
lar to ours. The inherent fluctuation with an amplitude
which is saturated before the cell injection in the weakly
unstable plasma is nonlinearly coupled with a cell during
its lifetime. The cell appears as an external force for the
inherent fluctuation. Since the inherent fluctuation and
the cell move with essentially the same azimuthal veloci-
ty Vd =En& Bo/Bo, this model enables us to use the Van
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FIG. 2. (a) Temporal variations of potential fluctuations p
with cell injection. The arrows show the time when the cell is
injected. (b) Variations of time phases of the signals shown in

(a). Circles show the peaks of the signals. The size of the cir-
cles indicates the accuracy of the determination of the position.
Top traces in (a) and (b) correspond to the signal without cell
injection.
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FIG. 3. Variations of intensities (p ( of the azimuthal
modes with mode numbers m as functions of time t. The two
vertical lines show the duration of the applied pulses.

1027



VOLUME 60, NUMBER 11 PHYSICAL REVIEW LETTERS 14 MARCH 1988

where p,„,o is the amplitude normalized with pp, to is the
normalized time when the cell grows up to the maximum
amplitude, and bt is the effective growth and decay time
of the cell.

Measurements of the correlation function R =(p(t)
=0)p(8)) between two probes at r =a as a function of t)

show that the correlation length of the fluctuation is ap-
proximately L = 2tra. With the assumption of a convec-
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FIG. 4. (a) Numerical results from Eqs. (1) and (2).
@„tp=5 and tp =20. (b) Time phases of peaks of the signals.
tp is varied as tp=20+j (Tp/5), where j =1,2, . . . , 6, from the
second trace to the lowest one as shown by the arrows. Top
trace shows the phase without external force. Filled and open
circles correspond to &,„tp=5 and 1, respectively. (c) Aver-

aged signal obtained by our adding the data in (b) after shift-

ing the signals in time to obtain the same injection time to=20.
In all cases p 0. 1 and P =4.

der Pol-type equation with a pulselike forcing term
where the time variable t is related to the azimuthal po-
sition through t =ao/Vd.

d ttt/dt —e(I P—ttt )dy/dt+ttt=ttt, „,(t),

where p is the fluctuation amplitude normalized with the
saturated amplitude po, t is the time normalized with
IIo=2trfp=2tt/Tp, e is the linear growth rate normal-
ized with Qo, and p is the coefficient of the damping
term which is assumed to be proportional to the wave

power, i.e., p . In the case without external force ttt, „t(t),
the condition for a saturated amplitude of go=i gives

p =4. To simulate the external forcing term we use

tively growing instability, the growth rate can be es-
timated as

I/e = Qp(L/ Vd ) = QoL/(Qoa/m) = 4tt,

where m =2. Then a=0.08. All the other constants in

Eq. (2) are obtained from Fig. 2(a), i.e., p,„,o=5, and
Bt =roti =n, since the growth time of the cell, ti, is
about 100 ps and the wave period To = 200 ps.

Figure 4(a) shows a wave form obtained numerically
from Eqs. (1) and (2) with parameters @=0.1, p,„to=5,
while 1/(bt) =0.1, and to=20. Here we obtain a signal
similar to the result in Fig. 2(a); see, for instance, trace
No. 4 or 5 from the bottom. The inherent saturated fluc-
tuation is strongly modified in amplitude and in phase
when the external force becomes dominant at around
t 20 and the inherent mode reappears after the disap-
pearance of the external force. The important point is
that the phases of the oscillations remain shifted also for
times after the decay of the external pulse. In order to
investigate the effect of varying to on the phase shift of
the rearranged fluctuation, we change to within one
period as to-20+ j(To/5), where j=1,2, . . . , 6. The
results for (jt,„&o=5 are shown in Fig. 4(b) by filled cir-
cles which correspond to the times of peaks of the sig-
nals. The arrows show to In the .top trace the peaks for
the case without external force are plotted. Here we
clearly find that the temporal position of the peaks fol-
lows tp. When (jt,„,o is decreased to 1, the phase shift be-
comes small and also depends on the time to, as shown

by open circles. However, in both cases we obtain results
similar to those shown in Fig. 2(b).

In the experimental results in Fig. 1(b), the cell is in-

jected at a random phase relative to the background fluc-
tuations. This might be realized if the signals in Fig.
4(b) are shifted in time to get the same injection time to
and then averaged. Figure 4(c) shows the signal thus
obtained. Here, we have to=20. For t ) to the phase of
the random fluctuation is locked and an organized struc-
ture evolves clearly. For t (to, on the other hand, a11

the phases are mixed and cancel out completely. These
results agree well with those in Fig. 1(b).

In conclusion, we have observed the forced orangiza-
tion of the flute-type turbulence by convective-cell injec-
tion. The bulk-mode evolution follows the Van der
Pol-type equation with a single pulse forcing. Also the
microscopic behavior was clarified. That is, the energy
of the inherent mode is transferred to a lower mode
number through the interaction with the externally in-

jected cells. This interaction thus takes the form of an
inverse cascade. This might also correspond to a
quenching of the initial spatial mode of the turbulence.
Since these phenomena occur within the lifetime of a
cell, the turbulence is rearranged in time and as a result
an organized structure appears in the turbulence. Simi-
lar results may appear also in the broad-band case. This
investigation is in progress.
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