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neutron scattering are clearly indicated. The
potentially useful anomalous scatterers include
Li°, B, Cd, and a number of examples in the
rare earth and actinide series. Experiments
are under way to investigate Li® and B as well
as several others.

*Operated for the U. S. Atomic Energy Commission
by Union Carbide Corporation.
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THEORY OF THE PULSATION OF FLUORESCENT LIGHT FROM RUBY
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It has been observed!s? that when one pumps a
ruby crystal placed between two parallel reflect-
ing end plates with intense light in order to
create an excess of population in the fluorescent
R level(s), there is a threshold of pumping power
above which (a) the light from the R line is emit-
ted in pulses accompanied by (b) a sudden spatial
and spectral narrowing. This pulsed character
of the output is not accounted for by the theory of
Schawlow and Townes?® for a gas Fabry- Perot
type maser. We propose here a different ap-
proach to this induced fluorescence which pre-
dicts that as long as the pump power is above a
certain threshold, part of the fluorescent power
will occur in recurrent bursts or pulses. From
the theory we derive quantitative estimates of
the pulse repetition rate, the fraction of power
in the pulses, and the nature of the output between
pulses, all in terms of the pump power and the
ordinary properties of the crystal and end plates.
The equations connecting the spectral and spatial
narrowing with the time-varying behavior will be
developed.

We consider two infinite parallel plates of power
reflection coefficient R and a distance d apart.
The space between is filled with a ruby crystal.
The crystal will be assumed just inhomogeneous
enough and the end plates rough enough so that
after many internal reflections photons will not
interfere in any regular manner; therefore, we
may use a straight photon model of the light.
Diffraction effects will be assessed in a later

article. We shall employ an optically thin crys-
tal which can be pumped uniformly and in which
the fluorescent photon density does not vary ap-
preciably across the crystal, i.e., 1-R<<1. To
describe the radiation then, we may use the den-
sity of photons %(v, 8) traveling in the crystal at
a frequency v from the line-center frequency
(measured in units of the half-width at half power)
and at an angle 9 to the norm. (All photon and
population numbers will be measured per unit
area of end plate.) We shall assume that we are
dealing with a single component of the fluorescent
R lines with an approximately cos?9 radiation
pattern around a crystal axis that is normal to the
end plates. (In an actual apparatus the crystal
alignment need not be perfect if the crystal sides
are smooth and parallel enough to form a light-
pipe between the end plates.) The gain (negative
absorption) coefficient a (v, 8) associated with the
R line will be assumed to result from a homo-
geneously broadened line and therefore may be
written [(1+12)N] (n, - n,)A cos?6 where the peak
absorption coefficient A for ruby is commonly of
the order 0.4 cm™! at room temperature and 10
cm™! at liquid-nitrogen temperature. We shall
measure the level populations and the difference
n=n, - n, in units of the difference »n, required
for the maser material gain at v, 6=0 to just
balance the end-plate losses. 7n,=N(1-R)/Ad. N
is the total number of ions (per unit area) which
when measured in units of n, will be called M.
We shall also measure, for convenience, the
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photon density «(v, 6) in units of n,, We may
write the time derivative of the photon density as

u(v, 6) =-u(v, 8)/T(v, 0) +pi+ps +D+F, 1)

where T'(v, 8) is the characteristic decay time of
radiation without maser ions present. We shall
assume for brevity that 7 is independent of v, 6.
The nature of the results does not depend much
on the behavior of the relaxation times T, es-
pecially at wide angles. Then, the value of 7 to
use is evidently dfc(1-R)] "%, where c is the ve-
locity of light in the crystal. The induced emis-
sion rate p; will equal nu(y, 6) cos?0[(1+1%)T]™!
with our definitions, and the spontaneous emis-
sion rate pg will be 3n,a(cos?9)[4n2(1 +12)] 72,
where a is the total spontaneous emission pro-
bability per second for the R level. The terms
D and F represent diffusion of photons from one
angle to another and from one frequency to an-
other as a result of crystal and end-plate imper-
fections, inhomogeneous broadening, and “spin-
spin” interactions, etc. It has been estimated
that these effects are not large enough to alter
the character of the results and a discussion of
them will be deferred. The time derivative of the
population difference is given by

. « m .
%n:PP-Ps -/:m dvf de smepz.((), v). (2)

0

The crystal absorbs Pp pump photons per second
(per unit area per ny) and spontaneously emits

P maser photons per second. The net contribu-
tion to the derivative of #n from these terms is
2w-a)M-3(w+a)n, where w is the pump transition
probability per second. The last term of (2) is
the integrated induced transition rate. Whenn<1,
the natural exponential decay time for the photon
density is of the order T, which is roughly a
million times shorter than any of the time con-
stants for the decay of the populations which are
of order wM)™*. Therefore, for n<1, the pho-
ton density follows very accurately and quickly
any change in n, and we may use the adiabatic
solution of (1) for the radiation (which reduces

to the quiescent solution when 7 is constant):

u(v, 6,8  3(M+nacos?6
T  87[1+1%-n(d) cos?s]’

If we integrate Eq. (3) over solid angle and fre-
quency, we obtain the total output flux of photons

(r<1). (3)

10

Pol.n(t)] .

Pn(t)]=2aM +n)[sin~tnY2 - (n - n?) Y2032, (4)

The differential equation for # in the region where
the radiation can react so quickly is

3h=Ppn) - Py(n), (5)

and » changes so as to approach a value such that
P, =P, However, if in (4) we let n approach 1,
P, approaches the value 7a(M +1), and since
clearly no quiescent solution exists for n>1, we
have an upper limit on the output photon flux P,
in the quiescent state. Since the output photon
flux must equal the input flux from the pump (on
the average), we know the pump rate w at which
n=1, which we call the threshold pump rate w,.
For the simplifications we have made, w,=37a/4;
for more accurate assumptions it is less. For

w >w, we have to solve the infinite set of coupled
equations (1) for u(v, 6, ¢) (one equation for each
value of 6) together with Eq. (2) for the popula-
tions. Since this set is nonlinear we must pro-
ceed by approximation, the easiest method of
which is to break time into intervals in which dif-
ferent terms may be taken as dominating, and
then to connect the solutions in each interval as
follows.

If the pump power is turned on suddenly so that
w>w,, then the population increases according
to (6) until z=1. For a short time thereafter, of
the order of (T/wM')?, n continues increasing
beyond unity at about the same rate as at n=1 to
a value of the order (wM'T)“? above unity. M’
=M(1-wy/w). At this point the positive exponen-
tial blowup of radiation quickly takes over. This
wipes out the excess of n above unity by induced
emission, creating momentarily ~§(wM'T)Y?
photons. The photon density decays in roughly
Gaussian fashion, with the total decay rate being
impeded by the production of more stimulated
photons, and this drives n to a value € ~(wM 'T,)"**
below 1 in a time ~T(wM'T)"¥4. By this time the
photon density has locked P, to the value given
by (4); » recommences its relatively slow re-
covery toward 1, and the whole process repeats
cyclically. We may integrate (4) to find the re-
covery time between pulses, i.e., the time for
n to grow from 1 -€ to 1. For any realizable
pump probability w, we see that €e<<1 and we
may use this approximation to simplify the inte-
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gration and obtain for the recovery time T, W=w/w,)

Y weM1+VT)

A plot of T,w,M versus W is shown in Fig. 1
with the spontaneous lifetime a=3x1073 sec,
R=0.95, d=1 cm, and for the values A =0.4 and
10 cm™. Despite the great simplifications, the
results of (6) are in good agreement with the
rough preliminary experimental results (giving
for example T, ~8 pusec for W=2 and A =0.4
cm™). Fortunately the errors made in esti-
mating € fall under the fourth or eighth root and
contribute correspondingly little to the error

of (6).

Among the implications of the foregoing esti-
mates of the behavior of populations and the out-
put power for noninterfering fluorescence with
negligible photon diffusion are the following:

(a) If T(v, 8)a(v, ) has a maximum in direction
(and frequency) so that the total integrated out-
put, computed from (1) with % =0 and infinite
gain in the optimum direction, is finite, then
there is a threshold at this output power above
which pulses may be expected to appear con-
tinuously. (b) The fraction of the total output
light that is emitted during the pulses is signifi-
cant and is approximately (wM'T)**(wMT,)™.
This is of the order } at W~1.1 and approaches
(W -1)/W at high W. (c) Our estimate of n(t)
may be inserted into Eq. (1) to solve for the de-
tailed behavior of the radiation as a function of
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FIG. 1. Two plots of Eq. (6) for the time elapsed
between pulses T, as a function of pump power each
withd=1 cm, R=0.95, and a=3%x1073 sec, but with
different room temperature absorption coefficient A.
The dimensionless units chosen make the function in-
sensitive to changes in the above parameters.

T = L [61/2- (W -1)r ln(1+2(1+‘/2_)e"")]. (é)
(1+v2)2

(W -1)

time, frequency, and angle. The entire calcula-
tion seems too difficult without machine compu-
tation. However, the average narrowing factor
during the interval between pulses has been
estimated to be of the order [Mw,T(W -1)]*®
both for spatial narrowing over the cos?4 be-
havior and for frequency narrowing over the
natural linewidth. During the pulse the spatial
narrowing is evidently great enough that inter-
ference and diffusion effects might alter the
prediction of (1) for the spatial distribution
significantly.

Statz and deMars®* have explained the possi-
bility of a pulsed output in the simpler case of a
single-mode microwave ruby maser. However,
that the results of this paper differ quantitatively
from those that would be obtained using the equa-
tions of Statz and deMars with new parameters
appropriate to the optical case rests essentially
on two things: (a) We have assumed that photons
may propagate in any of a continuum of direc-
tions, which requires the “continuum” of equa-
tions of (1) and (2) rather than the two coupled
equations of reference 4. Also, Egs. (1) and (2)
cannot be reduced to the form of two coupled
equations in two variables. (b) Our threshold
for pulsations depends on the anisotropy of the
propagation constant o for ruby, or more
precisely on the curvature at maximum of
a(v, )T (v, 8). This threshold increases as the
anisotropy is diminished to where, for the iso-
tropic gas maser described by Townes and
Schawlow, it might well be too high to be signifi-
cant experimentally. Also for a gas maser, the
medium is so much more optically homogeneous
that interference phenomena would play a domi-
nant role and the approach of Townes and Schaw-
low would be more direct than a modification of
the approach presented here.

I would like to thank T. H. Maiman for valuable
discussions of experimental results and G. Birn-
baum for his interest and encouragement.
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ANGULAR DISTRIBUTION OF LYMAN-o RADIATION EMITTED BY H (25)
ATOMS IN WEAK ELECTRIC FIELDS
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H atoms in the 2S state are known to be meta-
stable in a field-free region.! Application of an
electric field perturbs the atoms, causing them
to emit Lyman-« radiation and to decay to the
1S ground state. It is the purpose of this Letter
to point out that the angular distribution of the
radiation is isotropic and to examine the conse-
quences of this conclusion for interpretation of
certain electron-scattering experiments.

The electric-field-induced emission process
can be considered as arising from a perturbation
of the 2 25, state by the nearby 2 %P,, levels
only. Since the 22P,, levels are energetically
much farther away from 2S, their effect can be
neglected. The effect of the perturbation of each
P,, level can be considered separately unless
the coupling by the electric field is too strong,
or unless there is accidental level crossing.? If
one assumes that the latter condition is not pre-

~sent, the former can occur only if the perturbing
matrix element V is comparable to the energy se-
paration kv between the S, and P, levels. Here
v=|ES,,) -EP,)]/h~10° cps; V/h~ea E /h~10°
cps for a typical laboratory quenching field of 50
v/cm, and the condition of weak coupling is well
fulfilled.

Thus, it is only necessary to consider sepa-
rately the angular distribution of the radiation
emitted by an H atom in either of the two P,
states. The well-known formulas® for the rela-
tive strengths of the 7 and o lines give

I(m)/I1(0) = 4m?/(J tm)(JFm + 1).

In the present case J=3%, m=+%, and I(r)/I(0) =1.
Thus the radiation is completely unpolarized and
the angular distribution is isotropic.

Recently a controversy has arisen over the
absolute magnitude of the cross section o(2S) for
excitation of the 2S state of H by electron impact.
Schultz and the writer? measured o(2S) from
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threshold (10.2 ev) to about 45 ev. The maximum
value for o(2S) was (0.35+0.05)na,2. Since the
results depended primarily on normalization of
the data to the Born approximation, the conclu-
sions are unaffected by the present paper. A
considerably less precise confirmatory absolute
determination measured the number of photons
emitted by electrostatic quenching. Since, in the
latter experiment, the data were treated by as-
suming isotropic angular distribution of the pho-
tons, the conclusions of Schultz and the author
rest unchanged.

Subsequently, Fite and co-workers® have meas-
ured o(2S) by comparing the intensity of photons
emitted from quenched H (2S) atoms with the in-
tensity arising from excited 2P atoms. [o(2P)
had been measured previously by normalization
to the Born approximation.] The measured o(2S)
was consistently about one third of the results of
Schultz and the writer over the common energy
range. Fite et al. extended the observations to
energies as high as 700 ev. Above 300 ev, the
results agreed with the Born approximation.

Fite et al. stated that this agreement was “thought
to be undeniable evidence” for the correctness of
the lower value for o(2S).

However, Fite et al. assumed 1009% polariza-
tion of the radiation parallel to the electric field
and perpendicular to the direction of observation.
They multiplied their results by a factor of 2/3
to correct for anisotropy. According to the re-
sult of the present paper, this correction should
not be made, since the radiation is isotropic.
Thus the results of Fite et al. should be raised
by 50%. This would bring their maximum cross
section to 0.16 7a2, in better agreement with the
higher value of Schultz and the writer. Never-
theless, the disagreement is still substantial and
exceeds the combined errors.

The most probable values of Fite et al. now



