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GROUND STATE OF AN ISING FACE-CENTERED CUBIC LATTICE
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Many antiferromagnetic compounds have a
face-centered cubic (fcc) magnetic structure.
Although in the case of nearest neighbor inter-
actions the ground state of such systems is
clearly degenerate, no exact information has
been available regarding either the magnitude
of its degeneracy or any of its thermodynamic
properties. In the case of an antiferromagnetic
Ising triangular lattice, it has been shown that
the entropy per spin is finite! and the zero-field
susceptibility infinite? at 7=0°K. In this Letter
we show that, assuming nearest neighbor Ising

interactions, simple topological and energy argu-

ments lead to a complete classification of the
ground-state configurations. Hence, a precise
enumeration of the states is possible and exact
thermodynamic results are deduced at T=0°K.
We consider an antiferromagnetic system

consisting of N spin moments on an fcc lattice.
Each spin is capable of existing in one of two
possible states denoted +, -, and interacts with
its nearest neighbors (n.n.) only. The interac-

tion energy is +J for a pair of like spins (++ or --)

and =J for a pair of unlike spins (+- or -+).
First, the energy of the ground state of the
system is determined. An fcc lattice of N sites
can be subdivided into N tetrahedra, such that
each n.n. interaction bond is found on one and
only one tetrahedron; hence there are a total of
6 N such bonds. In the ground state, each one
of these tetrahedra must be in its own ground
state, i.e., two of its spins in the state + and

two in the state -. This ground state of the tetra-

hedron is denoted by the symbol w, and the cor-
responding energy is -2J. Hence the energy of
the ground state of the fcc system is -2NJ. It
then also follows that every tetrahedron in the
lattice is in state w.

We next consider the fcc lattice built up of
layers of triangular lattices. In Fig. 1 such a
layer (1) is shown—the circles at the centers
of the triangles denote sites on layer (2) which
is immediately under layer (1), and points at
the centers of the remaining triangles denote
sites on layer (3) which is immediately above
layer (1). Each triangle of (1) is the base of a
tetrahedron, the vertex of which is a site either
on (2) or (3). Also, each site on a given layer is
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the vertex of a tetrahedron, the base of which is
a triangle on an adjacent layer.

Since in the ground state of the fcc system
each tetrahedron is in the state w, it follows
that each triangle of spins in a given layer
should be in one of the states (++-) or (--+).
Therefore any triangular layer should also be
in one of its ground states. The number of such
states is of the order 2™  where n is the num-
ber of spins (or sites) on a triangular lattice.!

Thirdly, we note that if the configuration of
the ground state of layer (1) is determined, then
the configurations of both layers (2) and (3) are
also determined. This obtains because each tri-
angle has one of the configurations (++-) or (--+),
and since it is also required that each tetrahedron
be in the state w, the state of the spin at the ver-
tex of the tetrahedron is determined, and this
vertex is in the adjacent layer. It follows that
the ground configurational state of the whole fcc
system is determined by the ground configura=-
tional state of any one of its triangular layers;
hence we can deduce that its degeneracy is
<2047 5~ N¥3, We now proceed to show that
the strict inequality holds.

___———__.—-__—_. — -

\@/_\@/ A NTNTNY

———

VAVAYAYAVAVATAY
A AVANAVAVAVA
ACATAVATATACAN

NNV NN/ \@/ \@/+\@/
PATAYA \@/+\@/+\@/_\e/ \

’@'@A@A\@/ \@/+\@/+\@/

/‘f/////

FIG. 1. Three successive layers of a face-centered
cubic lattice: layer (1) denoted by triangles; sites on
layer (2) denoted by circles; and sites on layer (3) are
at the centers of the remaining triangles.
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FIG. 2. The a* and % clusters. Notation as for
Fig. 1.

Figure 2 shows two clusters, each having a
central spin with its 12 nearest neighbors. Such
clusters contain 8 tetrahedra: 6 having the tri-
angles of (1) as bases, the remaining two having
the central spin for their vertices and their bases
on layers (2) and (3), respectively. The condition
that each tetrahedron must be in the state w re-
duces the number of basic types of such clusters
to four. Two of them, o* and g*, are shown in
Fig. 2; the other two, o~ and 87, are obtained
simply by reversing all the spins.

It follows that in the ground state, each +
spin is at the center of an ot or g* cluster and

each - spin is at the center of an @~ or 8~ cluster.

The possible ground states of a triangular layer
can therefore be obtained by grouping these four
clusters. The number of possibilities is re-
stricted by a property of the « cluster. If a par-
ticular site—chosen as origin—is the center of
an o cluster, then the adjacent clusters along
the 00 axis must also be « clusters. Hence all
clusters along the 00 axis must be @ clusters. On
the other hand, adjacent clusters alongaa or bb
axes may be either o or 8. If one therefore
looks at the triangular layer along the 00 direc-
tion, one can have a row (parallel to 00) of «
clusters followed by another row of either «
clusters or g clusters. Thus the triangular layer
will consist of rows, each consisting entirely of
a or B clusters (e.g., Fig. 1). The number of
arrangements is clearly ZR, where R is the num-
ber of rows.

The degeneracy of the ground state of the fcc
system is therefore exp(ANY%1n2), and it follows
that in the limit N = the entropy per spin tends
to zero as T~ 0°K.

In the above scheme all triangular layers have
identical configurations and since all possible
configurations have zero moment, it follows
that the susceptibility is zero at T=0°K.

I am grateful to Dr. M. F. Sykes for drawing
my attention to this problem and for valuable
discussions.
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IN SOME Nb-Zr ALLOYS*

T. G. Berlincourt, R. R. Hake, and D. H. Leslie
Atomics International, Division of North American Aviation, Canoga Park, California
(Received May 24, 1961)

Zero electrical resistance at unusually high
magnetic fields and current densities has recent-
ly been reported in the compound Nb,Sn,*»? and in
the alloy Mo—25 at. % (atomic percent) Re.® The
present results on Nb-Zr alloys were obtained
during the course of a systematic investigation
of resistive superconducting transitions in cer-
tain Ti, Zr, Nb, Hf, and Ta-rich binary alloys
in magnetic fields up to 30 kgauss. The data
show that cold-worked Nb-rich Nb-Zr alloys

display zero electrical resistance at current
densities as high as 10° amp/cm?® at 30 kgauss
and at 4.2°K.%° As far as we are aware, only
the specially prepared Nb-clad “Nb,Sn” cores
of Kunzler gt_gl.l have exhibited greater zero-
resistance current-carrying capacities above
10 kgauss. The present measurements also
reveal some interesting high-field supercon-
ducting effects in cold-rolled Nb-Zr alloys:
(a) a marked dependence of the magnitude of
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