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triangles. Reasonable agreement is thus obtained
between the experimental form factor values and
those computed assuming the unpaired electrons
to be in a state of pure e symmetry.

It is important to observe that the scale factor,
k, here determined experimentally, is such as
to make the unpaired Sd charge distribution for
Ni++ much more compact in the solid than it is
for the free atom. This is in contrast to the
case of Mn++ where experiments" show that the
charge distribution is expanded in the solid.

These experimental results may be compared
with the recent calculations of Watson and Free-
man' for the Ni++ ion. These Hartree- Fock self-
consistent field calculations allow the wave func-
tions of electrons with opposite spins to have
different radial dependencies (spin polarization)
and lead to a contraction of the charge distribu-
tion (both for the free-atom ca.se and the case
where the Ni~ ion is placed in an octahedral
array of point charges). '4 Unfortunately, the
magnitude of the contraction is much too small
to explain the observations reported here. Never-
theless, the important fact that the relation of
the observed f& to the free-atom f~ is just oppo-
site for the cases of Ni++ and Mn~ would lead
one to look for the origin of this effect in the out-
standing difference between the two ions: namely
their differing spin configurations. These ex-
perimental results also serve to suggest that
whereas effects such as spin polarization and
crystalline environment have a large influence
on f~, their effect on f~ is small.
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Giaever' and more recently Nicol, Shapiro, and
Smith' have observed the tunnelling current flow-
ing between two metals separated by a thin oxide
layer. The most interesting results are obtained
when one or both of the metals are superconduc-
ting, in which case they find direct evidence for
a gap in the quasi-particle spectrum of the super-
conductor. They were able to account for the
data quantitatively on the assumption that the only
relevant factor is the density of states in energy.

This is to be expected if the transition probability
for transfer of an electron from one side to the
other is given by the familiar expression
(2m/&) IM I'pf, where I is the matrix element
and pf the energy density of final states, and
if it is further assumed that M can be treated as
a constant. It is implied that M is not only in-
dependent of energy for the small energy differ-
ences involved, but is also unchanged when the
metal goes from normal to superconducting.
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where Q = (2p /L, )'" is a normalization constant,
and in the barrier region, IPxl =(2P&-P& -Pz )
where U(x) is the potential energy. We have taken
units such that@=1. Beyond xy, we assume that
the wave function representing the electron in
state m drops smoothly to zero, instead of oscil-
lating, so that it is not a good solution for x &x~.

However, it is not immediately obvious that these
assumptions are justified. We give here a dis-
cussion of tunnelling from a many-particle point
of view and show that it is plausible to treat M
as a constant in the interpretation of the experi-
ments.

We suppose that the barrier extends from xa
to x~, with metal a to the left of xa and metal b

to the right of x~. Consider two many-particle
states of the entire system, 4, and 4~„,which
diff er in the transf er of an electron from a to b.
We suppose that 4, and 4m„may be defined in
terms of quasi-particle occupation numbers of
metals a and b, so that Cm„differs from 4', in
the transfer of an electron from state m in a to
state n in 5, all other occupation numbers re-
maining the same. Of course m may correspond
to a normally occupied state, in which case there
will be a hole in m in 4m+.

The quasi-particles do not correspond to plane
waves, but to waves which are reflected at the
barrier and which drop exponentially with dis-
tance into the barrier region. For example, in
the free-electron approximation for the normal
state the wave function would be of the form
(WEB approximation):

=Cp e & z sin(p x+y), x&x (la)
-1 2 i( y+ zz

m x x ' a

Thus we assume that 4, is a solution of the
Schrodinger equation with energy 8', for x (x&,
but there is a region to the right of xy where it is
not a good solution. Similarly, we-assume that

with energy 8'
„

is a solution for x)xa,
but not for the region to the left of x where the
wave function for quasi-particle n drops to zero.
Both 4', and 4 m„are good solutions in the barrier
region xa &x &x~.

We form a time-dependent solution as a linear
combination of 4, and various final states, 4
by the usual method:

0

(f)@ e
' o +P b (i)y e™(2)0 mn n~n mn

and substitute into the Schrodinger equation.
This gives for the matrix element for the transi-
tion

M = 4 (H -W )4' dT.
mn 0 mn nin

Since the integrand vanishes except over a region
to the left of xa, we need to integrate only over
this region.

We may express the integral in a more sym-
metric form by subtracting 4mn(H - W,)4, ,
which vanishes to the left of x~. Since we are
interested only in final states such that TVmpg TVop

the result may be written

M = [4 H4 -O' H4 ]dT, (4)
"a

where the subscript a indicates that the integra-
tion is to be taken over the region to the left of xa.

The matrix element may be expressed in terms
of that of the current density operator, J, in the
barrier region as follows. We introduce into the
integrand a step function 8(x) which is equal to
unity between a point xo to the left of the im-
portant region of integration and a point x, in the
barrier and which vanishes elsewhere. Then
integrations with respect to yi and zi vanish and
integration with respect to xi gives

M
mn

~ ~ (+ V.'4 - 4 V '4 *)$(x )dT. ~ dT. ~ .
2p, i„ . 0 i mn mn i 0 i

= -i[J (x ) -J (x )],mn 1 mn 0

where J (x) is the matrix element of the x component of the current density operator defined by

Z
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According to our assumptions, J~„(x,) =0 and
further, J~„(x,) is independent of position as
long as x, is in the barrier region. Thus

M =-iJ (x ).
mn mn 1

It is easily verified that this method leads to the
usual results for barrier penetration problems.

The quasi-particle energy in a superconductor
is 8 = (e'+b, ')"', where e(k) is the normal state
energy measured from the Fermi surface. In
calculating the density of final states, it is simp-
lest to take the conventions that f = 1 and 8 is
negative for the normally occupied states in the
Fermi sea, so that for 0 & ky, the probability of
a hole excitation is l-f and the energy of a hole
is -E. This is the procedure which has been used
in the interpretation of the experimental data. '~'

In each region of k space the density of states in

energy in the superconductor differs from that in
the normal metal by the factor

(6)

with ps = 0 in the gap, IE ) &b, . Agreement with

experiment is obtained if it is assumed that
M~„(orJ~z) is the same for the corresponding
transitions in normal and superconducting states.

Usually coherence factors, which have a marked
effect on transition probabilities, are introduced
in calculations of matrix elements between quasi-
particle states of a superconductor. ' To see why
such factors are not expected to occur in tunnel-
ling, one must consider the pairing in the vicinity
of the barrier. Coherence factors would be in-
troduced sf one simply paired complex conjugate
wave functions of the type (la), (lb), so that
pairing extends into the barrier region. How-
ever, if one looks at the problem more closely,
from the viewpoint of the more general Gor'kov
equations4 which allow for a variation of the energy
gap parameter with position, one sees that 6 will
drop to zero very rapidly in the barrier. In effect
electrons in this region are not paired and the
wave function is essentially the same as in the
normal state.

For an effective interaction v(r„r2), the posi-
tion-dependent energy gap function is defined by

b,(r„r,) = (N - 2 I g(r, )g(r, ) IN) av v(r„r,). (9)

Simply from the fact that g is very small in the
barrier region, one expects that b.(r„r2)is small
when either r, or r, is in the barrier. Note that
the tail in the barrier of the wave function of a
typical electron at the Fermi surface is very
much smaller than that of one of the few elec-
trons moving normal to the interface which has
an appreciable probability of penetrating. How-
ever, b,(r„r,) is expected to rise very rapidly to
normal values in the superconductor, b.(r„r,)
= 6(r, -r, )b., with b, =const.

Since, according to (6), the matrix element de-
pends only on the wave function in the barrier,
it would be expected to be the same as for the
corresponding transition in the normal state.
Actually, the wave function in the barrier would
be changed slightly because of the difference in
quasi-particle energies in normal and supercon-
ducting states, but this would have a negligible
effect on the matrix elements. Thus the only
significant difference in the tunnelling current
comes from the density of states factor.

The method described here can also be used
for calculating the tunnelling current between the
valence and conduction bands of a semiconductor,
as observed in the Esaki diode. It can be gen-
eralized to take indirect transitions into account.

The author is indebted to Dr. W. A. Harrison
and Dr. J. R. Schrieffer for discussions of the
theory of tunnelling in a superconductor.
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