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Bryant and Keesom' have discovered that the
lattice specific heat of indium is significantly
less in the superconducting than in the normal
state. A similar effect has been detected in
niobium by Boorse, Hirshfeld, and Leupold. '
Daunt and Olsen' have proposed to account for
the difference in terms of a temperature depend-
ence of the zero-point energy in the superconduct-
ing state. But according to the second law of
thermodynamics, a physical system can only
take on heat by means of an increase in its en-
tropy, or disorder. If the high-frequency lattice
oscillators remain in their ground states, their
quantum numbers do not change and they cannot
directly contribute any disorder to the system.
Their energy is indeed temperature dependent
because of their interaction with the low-lying
electron excitations, 4 but this interaction energy
is customarily included as part of the electron
excitation energy and must not be counted twice.
Thus the zero-point energy does not constitute a
new and independent source of heat, but instead
simply contributes to the "renormalization" of
the single-electron excitation energies. In any
case, it cannot produce a specific heat anomaly
at very low temperatures (T «Tc) because of
the "freezing-out" of the electrons in the super-
conducting state. '

The purpose of the present note is to emphasize
that the specific heat anomaly is clear and un-
mistakable evidence for an anomalous dispersion
in the phonon spectrum of the superconducting
state. Although a more complete report is in
preparation, we shall also indicate here the a
priori basis of such a dispersion, and show that
it gives a good quantitative account of the data.

bC /C =T /T,S S S
(2)

where

T = 0.55686(o/k,

and it is assumed that T» T~. The numerical
factor is one half of the ratio of the sum of the
inverse cubes of the integers to the sum of the
inverse fourth powers. To first order in the
anomaly, the lattice specific heat in the super-
conducting state is

C =nTs-BT
S

(4)

where the coefficient of the T2 anomalous term
is B=czT .

Figure 1 shows the data of Bryant and Keesom'
divided by T' and replotted vs T. The slope of
the lines is not adjusted but is instead fixed by
the value computed by Chandrasekhar and Rayne'
from their measurements of the elastic constants
of indium. The dashed line passing through the
origin represents the Debye specific heat in the

In addition we propose several straightforward
experimental tests of the theory.

Consider a constant shift upwards of 4e, in
the range of the angular frequencies involved.
The specific heat of any given lattice mode is
kf(I1&u/2kT), where k and 2sh are Boltzmann's
and Planck's constants, T is the temperature,
w is the angular frequency of the oscillator, and

f(pc) = (x/sinhx)'.

The fractional decrease in the total lattice spe-
cific heat is
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FIG. l. Specific heat divided by the square of tem-
perature vs absolute temperature, for the supercon-
ducting state of indium. (The nuclear quadrupole
specific heat C& is subtracted from the measured total. )
The solid line is shifted downwards by the dispersion
resulting from the self-energy process of Fig. 2.

absence of the dispersion. It is seen that the
displaced line, which contains only one adjustable
parameter, its displacement, gives a fit at the
very low temperatures which could hardly be ex-
celled by any temperature dependence other than
that of Eq. (4). The vertical and horizontal inter-
cepts are B=0.09 millijoule mole ' deg and

Te = 0.065'K, which inserted into Eq. (3) give
4w =1.6&10"sec ', or a frequency shift of
2.5@10' cycles per sec. At the higher tempera-
tures (0.55'K& T&0.85'K) the difference between
the heavy line and the experimental points is
fitted well by the exponential ae &~&/T, where
Tc is the transition temperature of 3.37'K and
the coefficients are a = 7.3 and b =1.43. These
values can be compared with the predictions'
of the BCS theory of a=8.5 and b=1.44. The
good agreement with the BCS exponent is con-
sistent with the similar agreement with BCS
theory in the temperature dependence of ultra-
sonic attenuation found by Morse and Bohm' for
indium. Turning to the niobium anomaly, we
find that the data are not fitted quite as well by
our T' dependence. If we assume, however, that
the corrections referred to in reference 2 will
lower the lowest temperature points the most,
the fit becomes satisfactory.

The microscopic basis for the shift in the fre-
quency of the phonons in the superconducting
state is the well-known result of Bardeen and

FIG. 2. Phonon self-energy Feynman diagram. The
absorption of the phonon produces an electron-hole
pair which can then re-create the phonon, resulting
in a frequency shift. The same electron excitations
are involved in both the real and imaginary parts of
the frequecny shift. Thus the dispersion in the super-
conducting state is related to the ultrasonic attenuation
in the normal state IEq. (8) of the text).

Pines' and others that the frequency of a sound
wave is very much dependent on the response of
the conduction electrons. This is illustrated by
the phonon self-energy Feynman diagram in Fig.
2. The phonon (represented by a wavy line) con-
tinually causes electrons to be excited out of
their normal state. The electrons then act back
on the phonon, changing its energy. (Time is
imagined to flow from right to left. ) The disper-
sion of the sound waves depends upon the real
part of the matrix element corresponding to Fig.
2. We want to calculate the change in the real
part when the metal passes from the normal to
the suyerconducting state. It is useful, however,
first to consider the imaginary part, which rep-
resents the damping calculated by Kittel, 'o and
which can be written as +/4pQ, where m is the
angular frequency of the sound wave, and Q is
a dimensionless number measuring the phonon
mean free path in units of the wavelength. Kittel's
result is

(5)

where 2mb is Planck's constant, p is the mass
density of the metal, c~ is the velocity of sound,
m* is the electron effective mass, and C is the
usual electron-phonon coupling constant. " It is
clear that there is not only a contribution to the
imaginary part of the phonon frequency, but that
a real contribution must also result, from virtual
excitation of the same type of electron states as
contribute to the damping.

The general features of Kittel's formula have
been verified by Morse and Bohm, ' including the
frequency independence of Q. They have also
shown that at temperatures very much below the
transition temperature the Kittel damping disap-
pears completely. This result follows readily
from an energy gap picture of superconductivity:
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If the phonon energy is less than the gap, there
is no continuum of excited states into which a
transition can take place. But this same de-
ficiency of states in the gap mill also lead to a
loss in the virtual excitations, and thereby pro-
duce a change in the real part of the phonon fre-
quency. Introducing h& as the effective energy
gap within which the normal density of electron
excitations per unit excitation energy e, p(e), is
replaced by zero in the superconducting state,
me ean write the difference in the complex phonon
self-energy between the normal and superconduct-
ing state as the following integral:

l'~~g IH I'p(e)e
ice &

A -&~-4 =2
~ 2 .

~
2de. 6

0

is the matrix element for the production of
an electron-hole pair by the absorption of a sound
wave of wave number q and is independent of c,
while 5 is an infinitesimally small positive quan-
tity. Since p(e) vanishes for e =0, we can use the
Taylor series expansion p(e) =op', where p' is
the derivative. [We now restrict our attention to
values of q sufficiently large that the maximum
value of e for which p(e) g 0 is much larger than
8&, i.e. , we consider wavelengths considerably
smaller than the coherence length. ] Both IH& I'
and p' can now be taken outside the integral sign,
and elementary integration yields

b,e+ (iv/4wQ) = IH I'p'(22 +in&a).
g

We verify that insertion of the usual expressions
for H& and p' reduces the imaginary part of this
equation to Eq. (5). The real increase in the
sound-wave frequency in the superconducting
state can now conveniently be compared with the
imaginary part, giving us our basic equation,

a~ =(u /(2m'Q).

This is a type of dispersion relation, relating the
dispersive behavior of the metal to its absorptive
properties.

It is now desirable to see if Eq. (8) yields a
reasonable value for Q. For our present pur-
poses, we can approximate the effective gap by
the actual energy gap, hg&=h&&=4kT . Sum
rule arguments indicate that this is probably an
overestimate, but not by more than 50%." With
this sort of accuracy understood, we can write

Q = 0.11 T /T,
C S

from which we obtain for indium, Q = 5.8. Equa-
tion (5) enables us to go further, and deduce the
mean electron-phonon coupling strength. From
the Debye temperature' of 111.3'K we infer c~
=0.83 x10' cm/sec, while the normal state
specific heat of indium' gives m* equal to 1.21
times the free electron mass. We find C=7.9 ev,
which happens to be just equal to the Sommer-
feld-theory Fermi energy. This result is not
unreasonable for a metal with a complicated
energy band structure sensitive to lattice
changes, and indicates that a given percentage
elastic strain must change the individual single-
electron energies in about the same proportion.
Since all superconductors do not necessarily
have such large deformation potentials, it is
clear that the specific heat anomaly cannot al-
ways be expected to appear. Furthermore, the
lowest shear mode, with which the anomaly is
primarily associated, has a longitudinal admix-
ture for nonsymmetry directions. The resulting
longitudinal deformation potential and electric
field could in some cases interfere destructively
with the shear coupling constant for the low-
energy electron excitations. Therefore, it is
clearly not feasible to predict a priori which
superconductors mill exhibit the anomaly. Never-
theless, it is possible to measure the quantity
Q directly from ultrasonic absorption (for the
lowest velocity mode averaged over propagation
directions) and thereby employ Eq. (9) to pre-
dict the value of T~. This would yield a quanti-
tative prediction of the heat anomaly in advance
of actual thermal measurements. Conversely,
it would be highly desirable to have a check on
the present considerations by means of an actual
ultrasonic measurement of Q for indium (and, of
course, also niobium for which T+ =0.2'K and

Q = 5). Such a measurement has already been
made on the (001) shear wave in tin, "yielding
Q= 60. Assuming that this is representative of
the other propagation directions, we can predict
that the specific heat anomaly is an order of
magnitude smaller in tin than in indium. A fur-
ther indication of an especially strong coupling
of the shear waves to the electrons in indium is
the strong temperature dependence found by
Simmons and Slichter'4 in the nuclear quadrupole
resonant frequency.

An alternative ultrasonic experimental check
on the present considerations mould be a direct
measurement of the dispersion in the supereon-
ducting state, rather than of the attenuation in
the normal state. Wavelengths ~ smaller than the
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coherence length $, are required, because of the
general principle that the bulk elastic constants
must give a correct description of sound waves
for A & (,. (The very small normal-supercon-
ducting difference in the elastic constants results
in turn from the fact that the transition energy
depends parametrically on the lattice strains
and forms only an extremely small fraction of
the total ground-state energy. ) Since the co-
herence length can be estimated for indium at
(,= 6300 A, the minimum frequency for detect-
ing appreciable dispersion is about 1.3 x10'
cycles per second. As a consequence of this
minimum frequency, the lattice specific heat
must return to its undisplaced Debye value in
the limit T-O. That is, if it were possible to
extend the measurements to such low tempera-
tures, the points in Fig. 1 would leave the solid
line and rejoin the dashed line.

It should also be noted that the constant fre-
quency shift follows from Eq. (6) only for u «2 .
At higher frequencies a more complicated dis-
persion results, leading for »2& to a very
small shift freduced by the order of (&u&/v) ].
Consequently, inelastic neutron scattering or the
Mossbauer effect, for example, does not offer a
feasible alternative method of detecting the dis-
persion.

An additional experimental test of Eq (8) is.
suggested by Pippard's" study of the effect of
the electron mean free path l on the ultrasonic
attenuation. He finds that the Kittel damping is
reduced by a factor proportional to fjy for l & y,
in agreement with similar studies by Kittel, 'o

Mason, "and Morse. " This suggests that if a
metal showing the heat anomaly were heavily
enough doped with an alloying impurity to reduce
significantly the coherence length (as would be
indicated by a decrease in the superconducting
skin depth), then the anomaly would disappear.
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