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It is well known that electrostatic voltage gradi-
ents over dimensions appreciably greater than a
Debye length do not exist in a plasma in thermal
equilibrium. '~2 However, it has been shown that
self-consistent potential gradients may be calcu-
lated for appropriate nonthermal velocity distri-
butions of ions and electrons. ' The purpose of
this Letter is to show that the Penning or oscil-
lating-electron discharge produces such distri-
butions together with potential gradients in the
discharge. The mechanism by which the gradients
are generated and maintained is the net volume
production of ion-electron pairs.

The existence of a potential gradient can be
justified by the following physical argument. The
density n of particles of a given type is

n = =P/V,
V

where P is the scalar particle fiux and F7 the mag-
nitude of the average velocity. If a potential gra-
dient is assumed to exist initially (such as the
vacuum electric field), then ions will be accel-
erated in the direction of the electric field and
electrons will be decelerated. Consequently, if
the flux remains constant for both, the density
of ions will decrease and the density of electrons
will increase. However, if a fraction of the
electron flux is electrostatically reflected by
the potential gradient, then the flux of electrons
can decrease sufficiently to maintain the charge
density equality between ion and electrons, and
the appropriate potential gradient may exist over
arbitrary length scales. (A mathematical treat-

ment of this situation in one dimension is given
in reference 3.)

This argument may be generalized to show that
a potential gradient not only can exist but may be
self-generated and maintained in the presence of
ion-electron pair production. To show that po-
tential gradients can exist, the following physical
argument may be made. Starting with an assumed
potential gradient (or the vacuum electric field),
the volume production of charged particles results
in an increase of the total ion flux in the direction
of the field, and a decrease in the electron flux.
Charge density equality' requires that

g /V =ZP /g. ,e e i i' (2)

so that the average velocity of the ions has to
increase and the average velocity of the electrons
decrease, consistent with the potential distribu-
tion assumed. The potential distribution required
to maintain equilibrium by satisfying the density
equality may then be computed using Eq. (2) and
the appropriate boundary conditions. This method
of solution will be illustrated for a specific case.

The electrode configuration of the Penning dis-
charge is such that the vacuum electric field
traps electrons and ejects ions which are produced
in the discharge (see Fig. 1). For simplicity it
may be assumed that: (1) ions and electrons are
essentially constrained to motion in one dimen-
sion (due in this example to the magnetic field);
(2) the potential V(x) is symmetric; (3) the elec-
trons produced in the electrostatic well are
trapped longitudinally and lost only by lateral
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diffusion across the magnetic field; (4) iona and electrons have mean free paths that are large com-
pared to the length scale of the discharge; (5) electrons born at x make R(x) electrostatic reflections
before being lost by diffusion. The equality of electron and ion density, based on Eq. (l), takes the
form

(m)v ('L dQ (x') (M )v2
t
x dg (x.)

n (x)+I ~ ~,=n(x) =
I

ec (2ej J [V(x) -V(x')]v' 4ZeJ "0 [V(x') -V(x)]v''

where nec(x) is the density of electrons emitted
from the cathode and the ion flux produced in dx
is

dy. (x) = [y +n (x)v (x)]N'(x)e. (x)dx. (4)

x V(x')o.(x')dx'.
Z

(5)

The factor 2 takes into account the electrons
produced between -x and -L. A self-consistent
potential distribution V(x) is in principle de-
termined by the above equations but the solution
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FIG. 1. Penning source electrode configuration and
potential distribution.

N is the neutral gas density, oz the ionization
cross section appropriate to the local velocity
distribution, ve~ the average speed of the cathode
electrons, and Qe the trapped-electron flux, given
by

I
I.

y (x) =2) R(x')[y (x')+n (x')v (x')]

is difficult to obtain analytically. Recourse is,
therefore, made to numerical solutions obtained
by an iterative procedure using finite differences.

The actual procedure is as follows: The region
of interest is divided into a number of cells.
Since the mean free path of particles is large
compared to the dimensions of the plasma, the
flux of trapped electrons characteristic of a given
cell (i.e., those electrons that electrostatically
reflect in that cell) is essentially constant through-
out the discharge between the points of reflection.
Moreover, the local potential determines the
speed of these electrons and hence their density
may be deduced. The production, the number of
reflections, and the density of ions and electrons
may then be computed for each cell. The produc-
tion in the center cell is computed first. The po-
tential required to balance the ion and electron
charge density at the cell interface is determined.
On the basis of the computed interface potential,
the electrostatic attenuation of the electron flux
is computed. This procedure is repeated for.
each subsequent cell. The trapped-electron flux
may then be redetermined from the computed
production rates in each cell and the number of
reflections each group of electrons makes by the
evaluation of the appropriate loss rates. This
provides the input for the next iteration which
can then be carried out in the same manner. A
stable, self-consistent solution is obtained when
the results of two succeeding iterations agree
within established tolerances.

This method has been used to calculate the
potential gradient in a Penning discharge. The
resulting voltage distribution for a particular
case (assuming only a given value of cathode
current I&, anode voltage Vo, and neutral gas
density N„ together with known collision and
ionization cross sections) is shown in Fig. 2.
The potential distribution measured experimen-
tally with both emitting and conventional Lang-
muir probes (and verified by a momentum anal-
ysis of the ejected ions) is also plotted in Fig. 2.
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trostatic potential gradients may exist in a
plasma over a length scale, determined by the
production mechanism, which for most cases of
interest is large compared to the Debye length.
These gradients are established by the nonthermal
velocity distributions generated by the volume
production of ion-electron pairs. The potential
gradient may be determined, in general, by a
simultaneous solution of Poisson's equation and
the appropriate equations of motion. However,
in most cases of interest, the assumption of
equal ion and electron densities leads to a con-
siderable simplification and allows the determi-
nation of the potential gradient from the flux-
velocity quotient.
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As can be seen, there is satisfactory agreement
between theory and experiment.

In conclusion, it may be said that stable elec-

FIG. 2. Comparison of experimental and theoretical
plasma potentials in the Penning discharge.
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4In general Poisson's equation must be satisfied (i.e. ,
the difference in the densities of ions and electrons is
the source of the electric field), but for most plasmas
of laboratory interest the approximation of equal ion and
electron densities is sufficiently accurate and leads to
a considerable simplification.

EXPERIMENTS ON THE ENERGY BALANCE AND CONFINEMENT OF A MAGNETIZED PLASMA

J. Bergstrom, S. Holmberg, and B. Lehnert

Royal Institute of Technology, Stockholm, Sweden
(Received April 20, 1961)

The possibility to confine a plasma in the mag-
netic field of a current loop has been discussed
in a number of earlier reports. ' 4 It has been
suggested2 to supply energy and to heat the plas-
ma in crossed electric and magnetic fields by a
method used earlier in rotating plasma devices. 5~'

In a mirror machine with a rotating plasma the
confinement is improved by the centrifugal
force. '~6 The large radial extensions of the cur-
rent loop configuration are of special advantage
when a strong centrifugal confinement has to be
realized. This is indicated both by a theory on
particle motion3 and by a macroscopic approach
including the energy balance. 4

The purpose of the present experiments is to

study how the energy balance and the confine-
ment of a rotating plasma are influenced by par-
ticle losses along the magnetic field lines to a
nonconducting wall. Figure 1 demonstrates the
experimental arrangement which consists of a
cylindrical vacuum vessel with an interior, ring-
shaped magnetic coil (main coil) and two external
auxiliary coils. The lines of the magnetic field
B are sketched in the figure. A discharge is
produced by a transverse electric field E aris-
ing from the voltage applied between the shield
surrounding the main coil and the walls of the
vacuum chamber. The energy is supplied from
a condenser bank by means of a, timed ignitron
switch. A second ignitron can be used to study
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