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electrical circuits were well shielded, Joule heating
of the resistors at low temperatures by -108 cps FM
and TV signals made measurements inaccurate, so
data were obtained when the transmitters were off.
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FIG. 1. Schematic diagram of a Corkscrew showing
a resonant particle trajectory.

Consider the motion of a charged particle in
the magnetic configuration shown in Fig. 1. A
properly designed helical field source (a "Cork-
screw") can perturb an initially uniform axial
field in such a way that there will be a monotonic
increase (or decrease) in the transverse energy
component of certain particles traversing the
structure. The necessary design condition is
that the force resulting from the interaction of
the axial particle velocity with the transverse
component of the field perturbation be always
approximately in the direction Uf the transverse
particle velocity. It follows that there must be
a close match between the local pitch of the Cork-
screw and that of the modified helical particle
trajectory. This condition may be expressed as

and vz are the mass, charge, and axial velocity
of the particle, and P(z) is the Corkscrew pitch
length at position z (P is negative for the left-
handed structure of Fig. 1). The helical field
perturbation has no over-all effect on the axial
field; therefore, a change in the transverse
particle energy necessitates a change in mag-
netic moment. The trajectory in Fig. 1 could
apply to an ion moving from left to right or to
an electron moving from right to left.

The Corkscrew may permit trapping of a high-
energy beam injected axially into a magnetic
mirror device. A positive particle following a
path as shown in Fig. 1 could be reflected by a
magnetic mirror somewhere to the right. On
its return, the particle trajectory would have
a handedness opposite to that of the Corkscrew,
and, therefore, the particle would encounter a
series of perturbations alternating in direction
at a frequency higher than the cyclotron frequen-
cy. These perturbations should cancel to first
order, so a mirror to the left would again re-
flect the particle, and trapping would appear to
have been achieved. The Liouville theorem, of
course, demands that some mechanism exist for
particle loss. The unique feature of the Cork-
screw is that this loss mechanism cannot be the
same as the trapping mechanism. Trapping is
achieved by what is essentially a strong reso-
nance effect. Loss must occur by a random
"scatter" effect whose exact nature has not as
yet been determined. This nonreciprocal charac-
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ter of the Corkscrew is in sharp contrast to ax-
ially symmetric nonadiabatic systems previously
investigated' in which particle loss can occur
along paths that are mirror images of paths
leading to trapping.

The resonance effect of the Corkscrew has been
demonstrated in an experiment wherein an elec-
tron beam on the axis of a solenoid was passed
through an iron helix. The resulting helical
beam was then reflected from a magnetic mirror
with mirror ratio 1.8; this indicated that over
half the beam energy was in the transverse com-
ponent. The iron helix was formed from bar
stock 1/8 in. thick, 30 in. long, and with width

cut to a sine curve 1/2 in. at the center and zero
at the ends. The bar was wound onto a cylinder
of 1-in. diameter with turns spaced to give a
central pitch of 7/8 in. and an over-all length of
4 in. The symmetric structure was necessary
to eliminate end effects, and only the exit half
was effective in "winding up" the electron beam.
The measured ratio of transverse to longitudinal
field was approximately 0.15 maximum on axis.
For combinations of beam voltage (up to 1 kv)
and magnetic field which gave a proper pitch
length, reflection occurred from the mirror.
Detuning either voltage or magnetic field per-
mitted the beam to pass through the mirror.
Reversing the direction of the magnetic field
so that the handedness was wrong eliminated the
resonance effect, and no beam reflection could
be obtained for any value of particle pitch length.

An approximate analytic treatment of the Cork-
screw yields the following results, which are
presented without complete derivation. The sca-
lar magnetic potential for an infinite helical cur-
rent-carrying ribbon of constant pitch and radius
is given in cylindrical coordinates as
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where the Kn' and In are Bessel functions, I rep-
resents current in the ribbon, and the origin for
z and 8 is taken at a radial line passing through
the center of the ribbon. Pitch length p, ribbon
width zo, and source radius y~ are shown in
Fig. 1. In a practical Corkscrew, a bifilar helix
with currents opposed would be desirable be-
cause this decouples the helical perturbation
from the main axial field. Then, all even n

terms vanish from the summation. If we make

w p/k (k an integer), every 4th term vanishes.
For k =3, the magnetic potential can be ex-
pressed very well as
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The application of this equation to a helix of
finite length and variable pitch should be quali-
tatively correct. The perturbation due to an
iron helix in an initially uniform axial field is
not significantly different.

The equations of motion can be solved under
restricted conditions. Define a "phase angle, "
n, from the equation of motion,

v =(q/m)(v xb )=(q/m)lv l lb l sinn, (4

where f(vz) is assumed normalized to 1 at z = 0.
Equation (4) can be solved by taking n = constant
(resonance), relating vz and v~ by the conser-
vation of energy, and making a judicious choice
of f(vz) which facilitates solution while still ap-
proximating the dependence from Eq. (3). For
v~=0 and vz =vO at z = 0, series expansions of
the solution take the form

v (qb sin~—=1+21 z I
+ ~ ~ ~ .
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Equations (1), (3), and (6) provide an adequate
basis for preliminary Corkscrew design.

An interesting coupling appears to exist be-
tween Corkscrew influence on the motion of a
particle in real and velocity space. If one con-
siders a perturbation given by Eq. (3) on an
initially uniform axial field, it can be seen that
a particle off axis and in resonance will see a
variation in axial field that in the moving frame
of reference looks like a steady gradient of field.
This observation can be formalized by use of the
equation for VB drift from guiding center theory. '
The result is y vz = constant, where x is the

guiding center position of the particle in the co-
ordinate system of Eq. (3). The crudeness of the
analogy leading to this result makes the value of
the exponent questionable. This type of coupling,
however, suggests that a Corkscrew might bunch

where b~=-Vgm. Use of the Pm from Eq. (3)
gives a dependence of bz on pitch length, and
Eq. (1) further relates this to vz. Thus one may
write

b =bf(v),
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particles in velocity space at the expense of a
diffusion in real space, without violating the re-
quirement for conservation of volume in phase
space.

A particle in resonance will experience a form
of phase stability. It follows from previous defi-
nitions that

(8)

n = (2 pv /p) - 8, (7)
z

and for the structure of Fig. 1

a= — (2zv /p)+(q/m)B .
z 0

Consideration of Egs. (4) and (8) shows that phase
stability exists for -—,

'
m& e& —,'w, since if vz is

too large e is negative and vz moves toward larg-
er negative values. The converse is also true.
Differentiation of Eq. (8) and elimination of
velocity factors by use of Eqs. (4) and (8) leads
to a second-order equation for n. The equation
is oscillatory for small cy and contains a damping
term which is positive for p increasing in the
direction of z motion and negative for p de-
creasing. This derivation is very approximate,
but it points up a possible area of difficulty in
Corkscrew design and further illustrates the
complexity of the device.

There are two ways in which Liouville's theo-
rem might be satisfied when the Corkscrew is
used as a trapping device. Essentially random
scatter of a particle by the field perturbations
may cause real space diffusion leading to a radi-
al drift, or may cause velocity space diffusion
leading to loss from the mirror loss cone.
Equations (4) and (8) suggest the origins of these
effects. An axial particle entering a Corkscrew-
mirror system as in Fig. 1 will be caught in the
stable phase, and vz will decrease monotonically.

This constitutes the trapping pass. On its second
or return pass through the Corkscrew, the parti-
cle will have a negative vz, n will be large, and

iz will average near zero. This situation will
occur on every pass for which vz & 0, and the
scatter effect will be small. On the third pass,
vz will again be positive, n will be small and at
some point during the traverse will pass through
zero. The cancellation argument used on the
second pass will not hold, and it is uncertain
just what will happen. If there is no preferred
value of n for the cy =0 condition, then an es-
sentially random scatter in both real and velocity
spaces might be expected. If vz merely oscil-
lates as e changes, then the phase at the exit of
the Corkscrew would influence the amount of
scatter. If a sufficiently strong mechanism of
phase stability exists, it is even possible that the
particle would be caught and held in the favorable
phase associated with the first pass. At worst
there does not seem to be any loss mechanism
that could produce an effect amounting to more
than a small fraction of the resonance trapping
effect. Hopefully, the difference between trap-
ping and loss mechanisms will permit particle
containment times to be increased arbitrarily by
suitable modification of the basic Corkscrew con-

figurationn.
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