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Although the Schwarzschild solution to the field
equations has been known for many years, be-
cause of the complicated nonlinear character of
the equations, there is still no generally accepted
form for the structure of the energy-momentum
tensor T„~ when the latter is that of a point mass
source. From a classical standpoint, one would
surmise that T„~ in a static coordinate system
reduces to Tp with Tp proportional to a delta
function, but from the structure of the field
equations it is by no means obvious that other
components are not also present.

Indeed, as we shall now show, and briefly dis-
cuss, this tensor does not have only one non-
vanishing component, i.e. , T,o (as one might ex-
pect classically for a point particle at rest), but
four. T o T 1 T s T s

s Too with T o m5(r)/
2gr'; the notation is described below.

In order to arrive at this result, we shall first
show that, for systems with static spherical
symmetry, when a certain condition is satisfied
by the g „(as is the case for the Schwarzschild
solutionI, the field equations reduce to a pair of
dependent linear equations, most simply ex-
pressed in terms of the scalar potential U (de-
fined by g«=1+2U). Using these equations, the
above structure for T ~ may be immediately in-
ferred.

Upon introducing the coordinate system asso-
ciated with the following standard line element
for systems with static spherical symmetry,

ds*=g«(r) dt'+ g»(r) dr'- rs(des+ sin'8 dgs), (1)

one finds for the nonvanishing components of the
field equations'~'.

G '= r*[1+(rg") -]= —zT '
0 0'

1 G 0+ r-1(gll g«gllg ) gT
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(s& gpp) [s+ or(ingpp) ) (Gl Go )

(rsT 1) -2rT s=p1,z 2

and it follows that there is only one independent
component for the T&I" which most conveniently
may be replaced by the trace, T. One then has
in terms of T for the components

Too = T ' =r 4 fTrs dr +C /r,
T2 T~=-T- TP, (4)

where C is a constant of integration. '
Let us now consider the Schwarzschild field,

i.e. , g«=1- 2Gm/r, g"= -g«. This field is de-
rived under the assumption that outside the
source T„~=0; hence in this region, the require-
ments on T„ for linearity are satisfied. We
shall continue the solution down to the source
point at r = 0, noting that go, (= - g") is finite and
differentiable even when passing through the
Schwarzschild singularity, and the regularity of
the field equations is not altered by the fact that
g« = 0 (or g» = ~) at r = 2 Gm, since this is not a
singularity in the differential equations them-
selves. '

Upon introducing the scalar potential, -g"=g«
= 1+2U, the field equations reduce to the follow-
ing pair of dependent linear equations~:

- 2r '(rU) =~T o(=xT ')
0 1

two equations would be linear if g 'g" were a con-
stant, ' since this is equivalent to g" - g 'g"gpp
=0; by the asymptotic condition4 this constant
may be set equal to -1; (c) if g 'g '=-1, the trans-
verse equation reduces to a Newtonian one, re-
lating Vsgoo to the transverse stresses; (d) in
order for g og ' to be constant, it is necessary
and sufficient that Tp = T,'. When the latter is
the case, the requirement that T„&. =0 reduces
to

and by spherical symmetry, G~ = Gm . We note
the following about the equations: (a) The first
equation is already linear in g"; (b) the other

where, for the case of a point particle, the source
terms are singular distributions which vanish for
r & 0. For the Schwarzschild solution, i.e.,
U = Gm/r, on-e readily obtains the following
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values for the T„~ which may be conveniently
summarized as

The surfaces of constant action are therefore
parallel to the surfaces of constant time, and
for this case, and in general for static coordi-
nate systems, ' the normal derivative to the ac-
tion surface is the rest mass, i.e. , dA/dt =m
= f( I)"T-de 9.

The result is therefore quite analogous to spe-
cial relativity because in the above case T,'+ T,'
+ T,'= 0, so that T0'= T as in special relativity
for a particle at rest. However, despite this
analogy, we encounter a difficulty if we try to
describe T„~ classically. We would expect
T "=p(dx&/ds)(dx„/ds), where p is the trace or
proper density m5(r)/2mr'. However, the pre-
viously found values for T„I"would imply, for-
mally, in the limit r=0,

g«(dt/ds)2= 1, g»(dr/ds)s = 1, r2(d8/ds)2 = 2,

r' sin'8(dg/ds)'= —,', (8)

instead of as in special relativity (dt/ds)'= 1,
with the other terms vanishing. Moreover, again
formally, we have (since Ig«I = ~, g» = 0, at
r = 0) dt/ds = 0, I dr/ds I

= ~, in contrast with the
classical result dt/ds = 1, dr/ds = 0. The two
angular terms may be formally equated to yield
d8'= sin'8 dg', which has the particular integral,
sin8 exp I g I

= constant, corresponding to spirals
on the unit sphere. '

While these results follow because we are no
longer working in the classical region of space-
tinie, and because of the structure of T„, it

T "=diag (1, 1, --,', ,')-m-5(r)/2n
P

where 5(r) is the radial delta function fc 5(r) dr
Since r6'(r) = —5(r), these distributions

satisfy the requirement (3).
Although the m appearing in the above equations

is up to this point of the discussion to be thought
of only as a gravitational mass, it follows di-
rectly from the action principle that it is also a
dynamical quantity, the rest mass. We have for
the gravitational action, A. , the expression
f( g)~'z-'Rd4x which by the field equations may
be written f( g) 'Td-'x. Hence, since T=T,'
=md(r)/2wr', the action integrated for a finite
time interval over any spatial region ~ contain-
ing the particle is

t
A(t ~) fdt= m~(r),

2
d'r =m(t- t ).0 '

would appear that we have reached a fundamental
limitation here in understanding thy point par-
ticle in general relativity as a purely classical
object (i.e. , a structureless mass point, with the
spatial stresses vanishing). " We leave as an
open question whether this nonclassical structure
has some relation to the nonclassical behavior
of particles as exhibited in the quantum domain.

In conclusion, to clarify the physical principle
underlying the condition on the T„~, we note that
one may arrive at this condition in the following
way: Let a particle be freely falling radially in
a gravitational field described by the line ele-
ment (1); what is the condition on g«and g» that
will make the radial acceleration independent of
the energy integral E = g«dt/ds? One readily
finds that the condition is g~gyy constant, and
upon examining the field equations, one finds
Tp Tj In other words, we are dealing here
with a consequence of the principle of equivalence
as it manifests itself in the field equations. " It
is certainly remarkable that this condition should
also make the equations, for this case, linear
and, upon transforming to rectangular coordi-
nates, make the coordinate system "proper" (to
within a normalization constant). We hope to
discuss these results further in a subsequent
publication.

*This research was supported by the United States
Navy under a contract monitored by the Office of Naval
Research.

~Because of the final linearity in gpp and g, it will
not be convenient to make the customary substitution
gpp

= exp', (r), g&&
= -expo(r). However, if one adopts

static cylindrical coordinates, one obtains an equation
linear in lngpp, as first shown by H. Weyl, Ann.
Physik 54, 117 (1917); 59, 185 (1919). See also T.
Levi-Civita, Rend. Accad. nazi. Lincei, (1917-1919);
R. Bach and H. Weyl, Math. Zeit. 13, 134 (1922). We
should like to emphasize the restricted character of
our results, i.e. , to systems with static spherical
symmetry, and to call attention to the more general
problem of finding rigorous linearizing conditions for
the field equations, and determining, by experiment,
whether or not they do occur.

We set c=l, ~=SAIC, where 6 is the Newtonian gra-
vitational constant, also f =df/dr, V~f= r—m(r~f r) r. —

3This condition is not, however, necessary for lin-
earity, e.g. , gpp =constant yields equations linear in
g, although it, of course, requires a different struc-
ture for the T~" than the Schwarzschild solution.

4That is, as x ~, g&„q „=diag (1, -1, -1, -1),
to the extent that we may neglect cosmological effects.

~The term Clr4, with C =em/2, where e is the charge
of the electron in Heaviside units, occurs in the
Reissner-Nordstrom solution, for which the T~" »so
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satisfy the above linearity condition, as does also the
cosmological term A6~".

6Moreover, we note that the Schwarzschild solution
for gpp is linear in m; hence we could alternatively
reflect m and obtain a solution for which gpp ~ 1 for
0 &y» ~. One should therefore draw a clear distinction
between singular points or regions in the field equa-
tions, and singularities or unphysical behavior in
ds =

g& dx"dx" due to the values of the g».
~Note that upon substituting the expressions for T~&

in (5) into the requirement (3), it is satisfied identi-
cally, so that a reduced version of the Bianchi identi-
ties has been preserved.

If one adopts the isotropic coordinates by setting
r = (1+ Gm/2r) 9, one finds the interesting result that
the particle cannot be located at r = 0 in the isotropic
system, and that rather r = —Gm/2 corresponds to the
particle's location. Moreover, the isotropic system
for the range 0» r» covers the space outside the
Schwarzschild radius twice, so that r =0 actually cor-
responds to spatial infinity, as may be seen from the
above transformation or by observing that the isotropic
line element is form-invariant under the substitution
q = G m2/4r. Compare the results, different from ours,
obtained by R. Arnowitt, S. Deser, and C. W. Misner,
Phys. Rev. Letters 4, 375 (1960), who assume the
particle to be located at r =0.

We have also calculated the surfaces of constant

I

action for Lemaitre's nonstatic coordinate system
[G. E. Lemaitre, Ann. soc. sci. Bruxelles, Ser. A.
53, 51 (1933)], and find 4=m(t'+ r')/2. The original
static observers satisfy t' -r' = constant. Differentia-
ting A in the direction dt' =d~', we have again m.

An alternative classical representation for the T~I"
is given by T„&= (p+p) (de~/ds) (dx„/ds) -p5„~, where
p is a scalar pressure. One then has p = p/2 and
again, formally, gas(dt/ds) = g&&(dr/ds)2=1, with the
angular motion vanishing.

One is perhaps reminded here of Einstein's feeling
that one should not assume a priori a classical repre-
sentation for the singularities of the gravitational field
in connection with deriving the equations of motion
from the field equations. See the interesting accounts
in L. Infeld, Helv. Phys. Acta. Suppl. IV, 206 (1956);
Revs. Modern Phys. 29, 398 {1957). The above re-
sults bring out the urgency of finding exact solutions
to the two-body problem.

~2The question of the relationship of this condition to
the principle of equivalence has been raised recently
by H. Bondi and S. Kilmister, Am. J. Phys. 28, 508
(1960), in their Letter commenting on the recent ap-
plication of the principle by L. I. Schiff, Am. J. Phys.
28, 340 (1960). Note, however, that Schwarzschild's
interior solutions do not in general satisfy this condi-
tion, in contrast with the interior solutions that would
be obtained from (5).
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