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Delocalization of Small Particles in a Glassy Matrix
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A binary mixture of hard spheres is investigated within mode-coupling theory under conditions that
ensure that the large particles form an amorphous solid. The localization length of small spheres grows
continuously with decreasing diameter ratio 6, diverging at a critical value §.=0.15. Close to the
localization-delocalization transition both the Lamb-Mdssbauer and the Debye-Waller factors of the
small particles show striking deviations from their commonly assumed wave-number dependence. Impli-
cations for quasielastic neutron scattering on hydrogen in (amorphous) metals are discussed.

PACS numbers: 64.60.Cn, 61.40.+b

In this Letter we apply the recent mode-coupling as the long-time limit of the tagged-particle-density re-
theory of the liquid-glass transition! to a binary mixture laxation function,® and correspondingly, the Debye-
of hard spheres with the aim of studying the localiza- Waller factor (DWF),
tion-delocalization transition of a system of interacting .
small particles in a glassy matrix executing thermal vi- S(@ss =,1Ln}°q)(q’t)”’ @)

brations. Having in mind the description of dynamical
properties of systems such as high loads of hydrogen in
metals? or liquids in porous media,? it is obvious that our

derives from the sth diagonal element of the matrix
®(q,1),, of partial-density relaxation functions defined

model overcomes several limitations inherent in the with variables N,(q)/~/S;(g) normalized by partial
Lorentz-gas model studied extensively in the past. > structure factors. These two quantities coincide in an
For the numerical evaluation we choose numbers hgrmomc S_Ohd and they show merely quantitative
N,=N, of hard spheres with diameter ratio §=0,/0, differences in a glass' as a result of anharmonicities.
<1 in a volume V. The total packing fraction n=+z They will, however, differ from each other qualitatively
x (N 63+ N,03)/V =0.55 ensures (as will be shown) in an assembly of small particles in a glassy matrix. For
that the large particles are localized in an amorphous t — oo, the generalized oscillator equation of motion for
structure for all values of 8 @, (q,1) with relaxation kernel K(q,?) reduces to the ex-

: L

We define the Lamb-Méssbauer factor (LMF) of act equation
species s, g (@) +K,(g,)f,(g) —1]1=0. (3)
Ss(q) =,1ilrloq)s (q,0), Oy Applying a mode-coupling approximation to the friction

| kernel we find (s=1,2; s'#s)
K;(g,) =0/, (k-q/q)*f;(|q—k| ) g (k) 2f (k)5S (k)
+ 2c5 (k) eyy ) f () IS5 (k) S (k)12 (k) 2f (k) oS s ROV, (4)

The direct correlation functions c.(k) entering Eq. (4) represent the only external input required. We use results of
the Percus-Yevick approximation® known to be reliable for hard spheres and available in analytical form for all values
of the system parameters n, 8, and ¢ =N/(N;+N;). Figure 1(a) shows representative examples of the partial static
structure factors

Sss’(q) = [1 —C(q)]s—s—'l'

Evaluation of f;(g) from Egs. (3) and (4) requires knowledge of the matrix f(g),,, which we calculate from

3 102(@)sof (@) g+ K (g,50),6lf (q) 1 — (g.0) . 1} =0, (5)

where ®(g,0) . and Q2(g),,. are determined solely by S;,.(g).” The exact Eq. (5) is derived in a way analogous to the
procedure described above. Applying a mode-coupling approximation to the friction kernel matrix K(g,?),. results in

K(g,») =Y ¥ vlgss ki’ |q—k|uu ) f k), f(la—k|),,, 6)
k a
up'
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FIG. 1. (a) Structure factors and (b) glassy-matrix and small-particle properties, for n=0.55, ¢ =0.5, and various &, plotted

against goy.

with vertex functions v also determined by the static
structure.” Equations (4) and (6) generalize Eqs. (2.13)
and (2.12) of Ref. 1 to a binary mixture. Note that Egs.
(5) and (6) are a closed set of nonlinear integral equa-
tions for the f(g),,, which was solved iteratively before
iteration of Egs. (3) and (4) to find f;(g).

Calculations were performed on a Cray X-MP/24
Computer and an accuracy of better than 5% was
achieved after six to seven iterations. Starting in a state

deep inside the glass, we fix n and ¢ and decrease &; i.e.,
we treat an increasingly nonideal mixture of spheres. Of
course, one expects that the small particles will eventual-
ly be delocalized and form a liquid in the voids created
by the large particles. This transition is, in fact, de-
scribed by Egs. (3)-(6). Representative results of the
DWF with the corresponding LMF are shown in Fig.
1(b).

The nonzero DWF and LMF of species 2 in Fig. 1(b)
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verify the above statement that for all é the large parti-
cles will form an isotropic solid, which we call a “glassy
matrix” in view of the liquidlike static structure factor
S2,(g), Fig. 1(a). For §=1, the LMF is well represent-
ed by a Gaussian f(g) ~exp(—¢g?/2/2), with a localiza-
tion length I, =0.0510; for both species [see also Fig.
2(a)], and the DWF differs from the LMF only slightly.
That is due to the particles oscillating harmonically
about their equilibrium positions in this state deep in the
glass. As & is decreased to zero, the packing fraction
17, =0.55/(140.4553) of species 2 increases by a factor
1.45. Yet Fig. 1(b) shows a slight increase of the locali-
zation length and deviations of the DWF from simple
Gaussian behavior, signaling the onset of anharmonic os-
cillations. Obviously, the smaller the particles the more
destabilizing their influence on the matrix.

Now we turn to the small-particle properties [Fig.
1(b)], which display some striking features:

(i) Contrary to the conventional liquid-glass transi-
tion, the LMF and DWF of the small particles change
continuously with the transition driving parameter &.°

(ii) A qualitative difference between LMF and DWF
arises: While the half-width of f,(g) [f,(0)=1 for
8> 8.] decreases to zero as §— &,, reflecting the delo-
calization of the small particles, and f,(g)=0 for
§ < 6., the DWF f(g),, stays finite even in the delocal-
ized phase, reflecting the geometric structure of the
glassy matrix. Physically this result is plausible: If the
particles are sufficiently small, they are able to diffuse
through the voids in the matrix, and thus their localiza-
tion length is infinite, f1(¢) =0. On the other hand,
since f,(g)=0 the particles do not execute ergodic
motion; indeed part of energetically allowed phase space
is blocked permanently by the arrested large particles.
The reason for f1,(g)=0 can be traced back to an in-
direct interaction between the small particles mediated
by the matrix of interacting large particles.’

(iii) As 6— &, the LMF shows deviations from simple
Gaussian behavior which are demonstrated in Fig. 2(a).
The same phenomenon is presented in more physical
terms in Fig. 2(b), where we plotted the g-dependent
generalization of the localization length /| of the small
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FIG. 2. (a) Logarithm of quasielastic intensity f,(g), (b) localization length /,(g), and (c) quasielastic linewidth y(g).
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particles:
L(g)=I[2/K,(g,>)]1"2 (7)

From Eq. (3), non-Gaussian behavior of LMF is expect-
ed in general. It will merely coincide with a Gaussian
for sufficiently small wave numbers obeying /,(gq)
=/,(0) <g ~'. This condition is violated (except for the
smallest wave numbers) as §— 8, because of the in-
creasing localization length [Fig. 2(b)]l. Note that as
86— 8., 11(g) develops an anomalous initial decrease
with increasing ¢ which leads to a shallow minimum at
qo before it grows indefinitely for large g. The minimum
position gg coincides with the position of the first peak in
S,,(k) which is obviously the source of the hindered
small-particle motion.

(iv) Finally, the § dependence of the inverse localiza-
tion length /,(0) ! is well fitted by a straight line in the
full interval 8. <8< 1, implying that /,«(5§—5,) "\
Please note the strong effect of “superheating™ of the
small particles in the voids of the glass: &,==0.15 corre-
sponds to a partial packing fraction 1,=0.5563/
(0.45+6°)=0.004, while in the bulk the small spheres
would melt at"!® n; = 0.52. Substantial superheating of
bubbles of hydrogen in an a-silicon matrix has recently
been observed. '

Here we apply the above results to incoherent quasi-
elastic neutron scattering on the small particles. The
low-frequency part of the incoherent scattering function
in the glass takes the form

qe = ‘I_M
S¥(g,w)=n w2+y2(q)fl(q)’ (8)

with half-width
¥(q) =q*Dnf1(q), 9)

where D, denotes a hopping-diffusion constant intro-
duced ad hoc at this point. [Dy, would be zero within the
simple approximation Eq. (4). However, it was shown
recently how dynamical processes can be incorporated
into mode-coupling theory, leading to a small but finite
diffusion constant in the glassy state.'? Using similar ar-
guments for ®,(g,1) we arrive at Egs. (8) and (9).'%]
The width and intensity of the quasielastic peak are plot-
ted in Figs. 2(c) and 2(a), respectively, for different 6.

Quasielastic neutron scattering on hydrogen in amor-
phous solids is expected to correspond to a small value of
8; thus, the matrix effects discussed above should be ob-
servable. In fact, the characteristic non-Gaussian behav-
ior of the integrated intensity has often been noted in ex-
periments on hydrogen in crystalline metals.2!* The
simple formula for the width y(q) in a glassy matrix is,
to our knowledge, new and should be checked against ex-
periment.
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