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Delocalization of Small Particles in a Glassy Matrix
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A binary mixture of hard spheres is investigated within mode-coupling theory under conditions that
ensure that the large particles form an amorphous solid. The localization length of small spheres grows
continuously with decreasing diameter ratio 6, diverging at a critical value 8, =0.15. Close to the
localization-delocalization transition both the Lamb-Mossbauer and the Debye-Wailer factors of the
small particles show striking deviations from their commonly assumed wave-number dependence. Impli-
cations for quasielastic neutron scattering on hydrogen in (amorphous) metals are discussed.

PACS numbers: 64.60.Cn, 61.40.+b

In this Letter we apply the recent mode-coupling
theory of the liquid-glass transition to a binary mixture
of hard spheres with the aim of studying the localiza-
tion-delocalization transition of a system of interacting
small particles in a glassy matrix executing thermal vi-

brations. Having in mind the description of dynamical
properties of systems such as high loads of hydrogen in

metals or liquids in porous media, it is obvious that our
model overcomes several limitations inherent in the
Lorentz-gas model studied extensively in the past.

For the numerical evaluation we choose numbers
N~ =N2 of hard spheres with diameter ratio 8=crt/cT2
~ 1 in a volume V. The total packing fraction g = —,

' z
x (N~tT~+N2cr2)/V=0. 55 ensures (as will be shown)
that the large particles are localized in an amorphous
structure for all values of 6.

We define the Lamb Mossbauer -factor (LMF) of
species s,

as the long-time limit of the tagged-particle-density re-
laxation function, and correspondingly, the Debye-
Waller factor (DWF),

f(q)„= lim N(q, t)„,
OO

(2)

q f, (q) +K, (q, ) [f, (q) —1] =0. (3)

Applying a mode-coupling approximation to the friction
kernel we find (s =1,2; s'&s)

derives from the sth diagonal element of the matrix
6&(q, t)„, of partial-density relaxation functions defined
with variables N, (q)/ JS„(q) normalized by partial
structure factors. These two quantities coincide in an
harmonic solid and they show merely quantitative
differences in a glass' as a result of anharmonicities.
They will, however, differ from each other qualilalively
in an assembly of small particles in a glassy matrix. For
t ~, the generalized oscillator equation of motion for
N, (q, t) with relaxation kernel K, (q, t) reduces to the ex-
act equation

K (q, ~) =(1/V) p&(k'cI/q) fs( I q k
I )[c»(k) f(k)„S»(k)

+2c„(k)c„(k)f(k)„,[S„(k)S,, (k)] ' +c„(k) f(k), , S, , (k)]. (4)

The direct correlation functions c„,(k) entering Eq. (4) represent the only external input required. We use results of
the percus-gevick approximation known to be reliable for hard spheres and available in analytical form for all values
of the system parameters tl, p, and c =N&/(N~+N2). Figure 1(a) shows representative examples of the partial static
structure factors

S„,(q) = [I—c(q)]... '.

Evaluation of f, (q) from Eqs. (3) and (4) requires knowledge of the matrix f(q)„., which we calculate from

I&'(q), f(q), +K(q, ), [f(q), —@(q,O), .]] =0, (5)

where &b(q, O)„, and fl (q)„~ are determined solely by S„,(q). The exact Eq. (5) is derived in a way analogous to the
procedure described above. Applying a mode-coupling approximation to the friction kernel matrix K(q, t)„, results in

K(q, ~)„=gg t (qss';k~~',
I q

—k I pp')f(k)~~f( I q —«I )»,
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FIG. l. a( ) Structure factors
against qo2.
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'r h b ve statement that for all c$ the large parti-
cles will form an iso rof tropic solid, which we cal a g y

f h li uidlike static structure factormatrix" in view o t e iqui
nt-Fi . 1(a). For 6=1, the LMF is well represen-

e — ' — l /2), with a localiza-ed by a Gaussian f, (q) —exp( —q, , wi
=0.051cr. for both species [see also Fig.tion length l, = . o.:

nl sli htl .2(a) ji an t ej, d h DWF differs from the LMF only s ig y.
11That is due to t e par icThat h t' les oscillating harmonica y

ns in this state deep in theb ut their equilibrium positions in is sa ou
1 As 6 is decreased to zero, the p gackin fractionglass, s is

b a factor2 =0.55('/(1+0 456 ) of species 2 increases by
(b) h slight increase of the loca i-li-1.45. Yet Fig. 1 s ows a
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While the half-width of f i (q) f i[ (0) =1 for
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particles:

j, (q) = [2/K, (q, ) ] ' (7)

y(q) =q'Di, f)(q),
where D~ denotes a hopping-difusion constant intro-
duced ad hoc at this point. [Di, would be zero within the
simple approximation Eq. (4). However, it was shown
recently how dynamical processes can be incorporated
into mode-coupling theory, leading to a small but finite
diff'usion constant in the glassy state. ' Using similar ar-
guments for @i(q,r) we arrive at Eqs. (8) and (9). ' ]
The width and intensity of the quasielastic peak are plot-
ted in Figs. 2(c) and 2(a), respectively, for diA'erent 6.

From Eq. (3), non-Gaussian behavior of LMF is expect-
ed in general. It will merely coincide with a Gaussian
for sufficiently small wave numbers obeying l 1 (q)
=ll(0) «q '. This condition is violated (except for the
smallest wave numbers) as 6 6, because of the in-
creasing localization length [Fig. 2(b)]. Note that as
6' 6„ l ~ (q) develops an anomalous initial decrease
with increasing q which leads to a shallow minimum at
qo before it grows indefinitely for large q. The minimum
position qo coincides with the position of the first peak in

Szz(k) which is obviously the source of the hindered
small-particle motion.

(iv) Finally, the 6 dependence of the inverse localiza-
tion length li(0) ' is well fitted by a straight line in the
full interval 6, &6(1, implying that l~~(8 —6, )
Please note the strong effect of "superheating" of the
small particles in the voids of the glass: 6', =0.15 corre-
sponds to a partial packing fraction rl ~

=0.556 /
(0.45+8' ) =0.004, while in the bulk the small spheres
would melt at" g] = 0.52. Substantial superheating of
bubbles of hydrogen in an a-silicon matrix has recently
been observed. ' '

Here we apply the above results to incoherent quasi-
elastic neutron scattering on the small particles. The
low-frequency part of the incoherent scattering function
in the glass takes the form

S"(q co)=x ' f)(q)( )
co'+ y'(q)

with half-width

Quasielastic neutron scattering on hydrogen in amor-
phous solids is expected to correspond to a small value of
6; thus, the matrix eff'ects discussed above should be ob-
servable. In fact, the characteristic non-Gaussian behav-
ior of the integrated intensity has often been noted in ex-
periments on hydrogen in crystalline metals. ' The
simple formula for the width y(q) in a glassy matrix is,
to our knowledge, new and should be checked against ex-
periment.
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