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New Term in Atomic Zeeman Energy
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An unexpected Zeeman shift discovered in recent measurements of ground-state rubidium hyperfine
structure in strong magnetic fields can be explained as an eAect of the hyperfine interaction in the mix-

ing of electronic states of difIerent principal quantum number and spin direction into the ground state.
A term of the form Pmt2mJB/J is induced in the ground-state energy. A calculation based on the
Fermi-Segre treatment of alkali-metal atoms yields the theoretical values P( Rb) =0.016 Hz/T and
P(s'Rb) =0.18 Hz/T, which are in good agreement with the experimental results P('sRb) =0.0162(14)
Hz/T and P( Rb) =0.168(15) Hz/T.

PACS numbers: 35.10.Di, 31.20.Pv, 31.30.Gs, 32.20.Bv

Fletcher, Lipson, and Larson' have carried out highly
precise measurements of the hyperfine structure and
Zeeman shifts in ground-state rubidium atoms in strong
magnetic fields. They report an interesting and as yet
unexplained shift in the Zeeman levels that is consistent
with a field-dependent change in gt/gJ, and nuclear to
electronic g-factor ratio. Alternatively, as they point
out, their results are equally consistent with the existence
of an additional term of the form PmtmJB/I in the
ground-state energy. In the latter case, the experimental
results imply that P( Rb) =0.0162(14) Hz/T, and

P( Rb) =0.168(15) Hz/T, which scale as gt for the two
isotopes.

Here I show that an ml mJB term is indeed induced in
the Zeeman energy by the magnetic dipole hyperfine in-
teraction, through coupling of higher electronic levels
(with flipped electron spin) into the ground state. This
term should be of order paB(Eht, ) /(E„„„),which is

about the right size, and it should scale as g~ in agree-
ment with experiment. A calculation of this term using
the Fermi-Segre treatment of alkali-metal atoms is out-
lined below, and yields values of P for each Rb isotope in

good agreement with the measurements.
I begin with the relevant part of the Hamiltonian giv-

ing the magnetic interaction of the nucleus and valence
electron:

H =Ha+Hht„He =pa(gJJ gtI) 8, H—hrs
= —', trpagtgJS(r)I J+ 2pagt [V(I.r/r )] (L —S).

In the ground (5st/2) electronic level of Rb, H yields the Breit-Rabi formula for the energies of the (mt, mJ) states.
Here we are interested instead in the eAect of Hhf, in admixing higher electronic levels. In third-order perturbation
theory, the shift of interest is
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where y stands for (n, lj,mJ mt) The main .contribution in Eq. (2) comes from n's states coupled in by the contact
term in the hfs interaction, although the n d states also contribute a small eAect through the tensor hfs term. Retaining
only the dominant n s contribution, factoring out the radial portion, and ignoring the gqI B term in H~, we obtain
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where m stands for (mt, mJ). %'ith use of completeness and some operator algebra (with J=cr/2), the sum over m'
and m" in Eq. (3) becomes

—'pagJ(mtmJ I [(2I 8)I J —2I J.8+I 8] I mtmJ).

Taking the quantization axis along 8, Eq. (3) may now be written in the form

gjpaB g z [mt mJ —I(I+ 1 )mJ +mt/2],
„, , (vs, —v„,)'

(4)
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where v„, =E„,/h and a„, is the hyperfine interval in

state ns given by

2Pgg!()!
3h

(5)

E "'/h =Pm 'm, a/ J, (6)

In the experiment of Fletcher, Lipson, and Larson, the
terms in Eq. (4) that contain only mI or mJ would prob-
ably be absorbed into the Breit-Rabi formula within un-
certainties, while the term in mI mj would yield a distin-
guishable eA'ect just as they observe. Defining p as the
coefficient of this term,

we have

assagJPB
4h, (y5, —y, )~ (7)

The sum in Eqs. (4) and (7) extends over all discrete
and continuum n's states. %'e evaluate it using the
Fermi-Segre approximation, in which we can write:
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where Z is the nuclear charge, r0 is the Bohr radius, and
Bp is the quantum defect for s states. Since E„=—hcR/
(n —Sp), the discrete part of the sum in Eq. (7) for
n

' & 5 becomes

gJP g a5, 5 —602

p [discrete] „»=
y5, —v6,

'
(n ' —Sp) (11 —26p)

, (6 —S,)(n' —5)'(n' —2S,+5)'
Using the measured values 60=3.2, a5, =1.0 GHz, and
v6, —v5, =6.0X10 GHz for Rb, the value 2.8x10' E &0,
Hz/T for gjpB/h, and summing the series in Eq. (9), we
obtain

P[ Rb discrete]„~ 5
=0.008 Hz/T. (io)
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To this must be added the contribution of the hole states
n

' ( 5. For these states the probability density at the
origin builds up much less rapidly than the energy
(squared) denominator, and the only significant addition
to p comes from n'=4, which we calculate from pub-
lished Hartree-Fock values for E4, and y(0):

P[ Rb discrete]„4 =0.002 Hz/T.

To calculate the contribution of the continuum in Eq.
(7), I begin with the energy-normalized density at the

!
origin for s-state Coulomb wave functions of energy

We renormalize this density at E =0 to agree with the
corresponding bound-state expression [using Eq. (8)] as

OO
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which simply requires us to multiply the density in Eq.
(12) by a factor of Z, just as one would expect with con-
tinuum states in the Fermi-Segre approximation. This
approximation should apply in the range of E of interest.
The continuum contribution to p in Eq. (7) thus be-
comes, with the aid of Eqs. (5), (8), and hv5, =e /
2rp(5 —6p) ',
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which yields

P[ Rb continuum] =0.006 Hz/T. (is)

Combining the various contributions to p from Eqs.
(10), (11), and (15), we obtain our theoretical value for
Pin Rb:

P( Rb),h„,y =0.016 Hz/T.

The value for Rb scales up exactly as gq.

P( Rb)th y 0. 18 Hz/T.

(i 6)

(i7)

These values are to be compared with the experimental

ones quoted above in the first paragraph.
In conclusion, I have shown that the hyperfine interac-

tion, by mixing excited states of opposite spin direction
into the ground state, accounts very well for the Zeeman
shift in Rb discovered by Fletcher, Lipson, and Larson.
The uncertainty in this calculation should be less than
15%, judging by success of the Fermi-Segre treatment of
alkali-metal-atom hyperfine structure. It should be not-
ed also that some of the inaccuracies in the Fermi-Segre
approximation cancel in the ratios used here [e.g. , in

Eqs. (9) and (14)] to find the answer in terms of mea-
sured quantities. A more rigorous approach is under
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consideration using Hartree-Fock wave functions.
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