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X-ray empirical wave-function models (XEWM’s) for molecular hydrogen have been obtained by use
of a density-matrix formalism fitting to x-ray diffraction data. Data are derived from the Kolos-
Roothaan wave function and an imposed crystal lattice. Molecular properties calculated from our
XEWM’s are in excellent agreement with theoretical results. An XEWM with a crystallographic resid-
ual of Rwr=0.0007 yields a calculated binding energy of 0.1332 a.u., extremely close to the Hartree-
Fock limit of 0.1336 a.u. This study demonstrates the accuracy with which XEWM’s are able to predict

molecular properties from x-ray diffraction data.

PACS numbers: 31.20.Pv, 61.10.—i

A high-accuracy x-ray empirical wave-function model
(XEWM) for molecular hydrogen has been extracted at
the Hartree-Fock level from x-ray diffraction data. This
represents a substantial and fundamental step in the
ability of the x-ray crystallographers to predict proper-
ties and to correlate structure and bonding. Properties
calculated from our XEWM'’s include the electric field,
the electric field gradient, the quadrupole moment, and
the total energy for molecular hydrogen. The quality of
the above properties depends on the flexibility of the
parametrized model wave function chosen (e.g., basis
functions, symmetry restrictions, and allowed orbital
overlaps). Therefore they critically test our ability to ex-
tract meaningful and accurate XEWM’s. The limited
amount of data available from an x-ray diffraction ex-
periment demands that XEWM’s have relatively few pa-
rameters compared with theoretical methods. Fortunate-
ly, the linear combination of atomic orbitals (LCAO)
approach provides a sufficiently simple description that
an accurate XEWM can be constructed, and it also pro-
vides a model which can be easily analyzed. Further, the
x-ray diffraction data provide an important restriction,
the Fourier transform of the total electron density, not
available to purely theoretical methods.

The conventional model for x-ray structure factors
takes the form of x rays being coherently scattered from
independent nonbonded spherical atoms. The parame-
ters of atomic types, positions, and thermal motions are
determined by a least-squares fit to the observed x-ray
structure factors, Fo(h). The ability of the crystallogra-
phers to obtain high-precision Fo(k), the Fourier trans-
form of which clearly shows the electron distribution due
to bonding, has stimulated great interest in extracting
high-precision information about the properties and
bonding of crystal components. The most widely accept-
ed models for analysis of high-precision Fo(k) have been
multipole pseudoatom models. Whereas excellent fits to
Fo(h), and therefore electron density, are achieved, there
are severe limits to the analysis of the results inherent in

these models.

This work is based on the premise that a wave-
function model is best to predict molecular properties, to
extract molecules from crystalline solids, and to describe
high-precision Fo(k). It is at this level where bonding
can be directly described, all electronic properties can be
predicted, and the constraints which assure a physically
meaningful model can be applied.

Stewart’s’ development of a generalized x-ray scatter-
ing formalism for improved fits to Fo(h) provides the
necessary framework. The one-electron density p(r) and
therefore the coherent x-ray scattering can be ascribed to
arise from molecular wave functions ®; which are
formed from linear combinations of atomic orbitals ¥;
with coefficients C;;:

d>,-=sz,-j\Pj or ®=CV¥ .
p(r) is given by
p(r) =23, 0 (N®;(r) =23 %, Pp¥] (r)¥;(r)
=2TrP¥(r)¥'(r) ,

where Pj; =3, C;;Cix or the population matrix P=cfc.
Similarly the calculated model x-ray structure factors
are Fc(h)=2TrPf(h), where f(h) is a matrix whose
elements are x-ray scattering products due to all possible
atomic orbital products for each diffraction index A.
Coppens and co-workers®~> applied Stewart’s formal-
ism by least-squares refinement of selected elements of
P. Problems arose because of the number of parameters
and their correlation both within the population matrix
and with conventional crystallographic parameters.
Importantly, it was demonstrated by Massa and co-
workers®~® that proper fundamental constraints on the
population matrix are necessary to achieve physically
meaningful model wave functions. These constraints
reduce the number and correlation of parameters within
the population matrix. Additionally, Massa and co-
workers showed that pseudoatom multipole models do
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not satisfy the Pauli principle nor necessarily result in to-
tal electron densities which are everywhere nonnegative,
constraints which are fundamental to any electronic
wave-function model. The matrix projector constraint
P2 =P assures that the wave functions are orthonormal,
and the condition TrP =/ defines the number of occu-
pied wave functions equal to N for orthonormal basis
functions.

Previous work on beryllium® demonstrates that excel-
lent fits to experimentally observed structure factors and
electron densities can be achieved with use of a model
empirical wave function restricted to rehybridization of
orbitals on a single atomic site describing independent
nonbonded atoms in a crystal field. This model success-
fully deconvolutes conventional crystallographic parame-
ters of scale factor and thermal motion from the
quantum-based population matrix parameters.

This Letter demonstrates for a molecular crystal that
not only excellent density fits and deconvolution of pa-
rameters can be achieved, but in addition that a molecu-
lar density can be extracted from a crystalline density
and that an empirical wave-function model based on x-
ray diffraction data can accurately predict bonding and
properties for this isolated molecule.

In our present work all the elements of P are deter-
mined by matrix solution of linear equations related to
the Fo(h) and the necessary population matrix con-
straints.'® In a single iterative step each new population
matrix element P;; is defined as the sum of the initial ele-
ment P;; plus the shift, A;;, necessary to improve the fit:
P/;=P;;+A;;. The equations, in explicit form, necessary
to solve for the A;; are as follows: (1) one equation for
each observation, Fo(h):

W(h)[zz[jA[jfj,‘(h)]
=W(h)[F0(h) —2ZijPijfji(h)] 5

where w(h) are weights related to the reliability of each
Fo(h); (2) one equation for each element P;; to enforce
orthonormality on the model wave functions:

WC[A,'j _Zk (P,-kAkj +Aiijj)]
=W"(_Pij+2k P,-kij) s

where w, is the weight necessary to enforce constraints;
(3) the number of occupied functions is determined by
we (X4 ik ) =w.(N — 3, Prx). The conventional crys-
tallographic parameters of atomic position (and there-
fore internuclear distance), thermal motion, and crystal-
lographic scale factors are determined by conventional
crystallographic least squares.

The x-ray diffraction data are calculated a priori,
based on the correlated wave function of Kolos and
Roothaan (KR).'" Davidson and Jones (DJ)'? extracted
the first ten natural orbitals of the KR wave function,
which were then used by Stewart, Davidson, and Simp-
son (SDS)!3 to calculate x-ray scattering data for the
hydrogen molecule. The SDS-tabulated entries were
used to form partial x-ray diffraction data sets with a
sin@/A maximum of 1.5028 A ~! based on equiaxial or-
thogonal unit cells with @ =23.290, 11.645, or 5.823 A
and one hydrogen molecule per unit cell centered about
the origin with atomic positions at = z. As there is no
significant dependence of XEWM'’s on unit-cell size, we
report only those for the 23-A unit cell with 279 in-
dependent diffraction intensities. The data used in these
refinements are on an absolute scale and contain no er-
rors due to absorption or extinction of x rays, nor do they
contain any thermal motion effects.

Table I contains the LCAO coefficient, C;;, and ex-
ponential scaling factors, ¢, for four different XEWM
solutions, each varying in the particular basis function
available to produce optimal fits to the Fo(h). The basis
function consists of normalized sums of normalized
Gaussians. All refinements utilize Huzinaga’s'* atomic-
hydrogen ls Slater-type orbital which is a sum of ten
Gaussian functions (STO-10G):

10
@, =N Y a;20%;/n) Y exp(—2air?) |

i=1
where the a; and ¢; are from Huzinaga. The § are fixed
at 1 in refinements for models 1 and 2 and are optimized
in refinements for models 3 and 4 to allow for radial
scaling of the basis functions. Models 2 and 4 provide
additional flexibility by splitting Huzinaga’s STO-10G
into two functions of ls symmetry (each with an in-
dependent ¢) consisting of the seven sharpest (7G) and

TABLE I. LCAO coefficients C, exponential scaling factors ¢, and distance of 2p, Gaussian
lobes from nuclear position r, for atomic basis functions obtained in XEWM solutions of oy

symmetry.
1s-10G 1s-7G 15-3G 2p-3G 2p-1G r
Model C ¢ C ¢ C ¢ C ¢ C ¢ (A)
0.5049 la .. .. .. ..
s 0.2225 1@ 0.3600 12

1
2
3 0.5398 1.188

0.3030 1.122 0.2825 1.157 0.0313 4.656 0.0403 0.442 0.154

2Fixed in refinement.
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TABLE II. Properties calculated for XEWM solutions and for Davidson-Jones (DJ) wave
function. As the crystallographic R,.r improves, the XEWM properties converge to accurately

predict the DJ properties.

Electric field Quadrupole
Rur D Bond energy Electric field gradient moment

Model (%) (R) (a.u.) (a.u.) (a.u) (a.u.)
1 9.52 0.259 —0.8057 3.185 —16.64 0.05

2 0.66 0.686 0.1255 0.132 —0.55 0.28

3 0.57 0.683 0.1252 0.141 —0.56 0.28

4 0.07 0.736 0.1332 0.012 —0.37 0.43
DJ 0 0.741 0.1336% 0.002 —0.34 0.46

2Hartree-Fock limit rather than DJ value of 0.1744.

three most diffuse (3G) Gaussians. Polarization is added in model 4 by the addition of two Gaussian-lobe P, basis
functions. The first is Whitten’s'> 2P, for atomic hydrogen with three Gaussians per lobe. The second consists of a
single Gaussian per lobe. Both P, functions have the Gaussian lobes at a single distance along the bond axis from the
center of the 1s functions with their positive lobes in the interatomic region.

Results in Table II show that physical properties for molecular hydrogen can be accurately predicted based on the
XEWM’s extracted by fitting to Fo(4)’s for a crystal containing hydrogen molecules. Each improvement in the set of
basis functions may be seen equally well by the improvement in the crystallographic R factor,

Rur =Y, w) | | FoW)| = |Fc(W) | | /X, wh) | Fo(h)|?

or by the bond energy calculated with a Hartree-Fock
Hamiltonian. Indeed XEWM’s predict bond energies
very close to those obtainable with the same basis func-
tions in an energy minimization. Model 4 is at the
Hartree-Fock limit for the bond energy, 0.1332 a.u. vs
0.1336 a.u. From a purely crystallographic point of
view, each improvement in the model and R,r yields
substantial improvement in the predicted H-H bond dis-
tance, D. This method therefore promises improved
atomic coordinates and bond distances from crystallo-
graphic studies, especially for atoms with “lone pairs”
and for bonds to hydrogen atoms. '®

Analysis of high-quality x-ray diffraction data has in-
cluded calculation of electrostatic properties in the
valence regions of molecules. Therefore we have calcu-
lated the electric field, the electric field gradient, and
quadrupole moment for molecular hydrogen at the nu-
cleus. Again XEWM'’s make predictions appropriate for
the quality of the model, with models 2 and 3 providing
good results and model 4 providing excellent results.

This study has shown that an x-ray empirical wave-
function model can be extracted from coherent x-ray
diffraction data for molecular hydrogen, and that this
model can be used to accurately predict molecular prop-
erties for this system.
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