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Self-Consistent Equations for Variable-Velocity Three-Dimensional Inverse Scattering

James H. Rose
Center for Nondestructive Evaluation, iowa State UniversityA, mes, iowa 500ll

and

Margaret Cheney
Mathematics Department, Duke University, Durham, Xorth CaroI&na 27706

(Received 9 March 1987)

This paper considers the three-dimensional inverse scattering problem for the wave equation with vari-
able velocity. A possible solution is presented in terms of equations whose self-consistent solution deter-
mines the velocity from scattering data. These self-consistent equations are (1) the wave equation in in-
tegral form, (2) a linear integral equation which relates the wave field and scattering data, and (3) a
novel formula for the velocity in terms of the wave field.
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The inverse scattering problem is to recover informa-
tion about an inaccessible region of space from measure-
ments of scattered wave fields. ' Consequently, inverse
scattering theory is of fundamental interest for the basic
and applied sciences. Important applications range
from radar and nondestructive evaluation to medical im-
aging and seismic exploration.

Well-understood exact inversion methods have been
developed for problems whose parameters depend only
on a single spatial dimension. Such methods exist in a
unified form and are widely useful in acoustics, electro-
dynamics, and elastodynamics, as well as quantum
scattering. Furthermore, for these problems, accurate
numerical algorithms are available.

The situation is much more dificult if the scatterer s

properties depend on more than one spatial dimension.
For the multidimensional case, the exact formulation of
inversion methods for variable-velocity wave equations
remains open. There are some techniques which are nu-
merically tractable. However, these techniques are ei-
ther approximate (e.g. , optics, physical optics methods,
or the Born approximation ) or depend on brute-force
variation of model potentials. In the latter method, the
choice of a suitable variational potential requires sub-
stantial a priori information which is generally not avail-
able.

In this Letter we propose a general method, based on
linear integral and diff'erential equations, for solving the
three-dimensional variable-velocity inverse scattering
problem. The basis of the proposed method is a set of
three equations. Their self-consistent solution (when it
can be found) determines the velocity from the scatter-
ing data. These data are taken to be the scattering am-
plitude for one direction of incidence, all directions of
scatter, and all frequencies. For ease of discourse, we re-
strict the velocity in the scattering region to be less than
that of the embedding space. A similar, but considerably
more complicated, set of equations can be found in the

general case.
This Letter proceeds as follows. First, the three self-

consistent equations will be given. Included is a brief
derivation of a key equation [Eq. (5)] which relates the
potential to the wave field. This derivation is based on

low-frequency asymptotic behavior. Two of the equa-
tions are then combined to give a second equation [Eq.
(11)] for the potential. Finally, some preliminary com-
ments are made concerning the numerical solution of the
self-consistent equations.

Our approach contains two interesting features. The
first is that the key equation for the potential, (5), is

based on low-frequency asymptotic behavior of the wave
field. This is in sharp contrast to other approaches which
consider either the high-frequency or short-time asymp-
totic behavior. The second interesting feature is that our
formula (11) for the potential is similar to the trace for-
mula introduced by Deift and Trubowitz for the one-
dimensional case.

We start with the variable-velocity wave equation

[&+c '(x)k ] ttt(k, x) =0.

Here 5 denotes the Laplacian, k is the magnitude of the
wave vector, qr describes a scalar field, and x E R
denotes the spatial coordinates. The velocity c(x) is as-
sumed to diAer from l only in a bounded region situated
about the origin of coordinates. Further, it is assumed
that c(x) is positive, bounded, and everywhere less than
or equal to 1 [c(x) ~ 1]. This assumption will be needed
for arguments involving causality.

We note that Eq. (1) can be derived from the wave
equation that governs the propagation of sound in Auids
(one sets the density equal to a constant). Consequently,
it is suitable for modeling many problems in acoustics
where the velocity is essentially independent of frequen-
cy. It is not as useful for modeling problems in elec-
trornagnetic scattering since in this case the velocity
commonly varies with frequency.
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For scattering problems, Eq. (1) plus boundary conditions can be conveniently rewritten in integral form as

y —(k e x) =exp(ike x)+k' d'x'Go —(k,
r
x —x'r )V(x') y —(k, e, x').

Here V(x)—:lc (x), e is a unit vector denoting the
direction of incidence, and Go—are given by @0=1 and that

(2)

= —(4~rx —x'r ) ' exp(+-ik rx —x'r ). (3)
y2'(e, x) =„d x'Go+ (k =0,

r x —x'
r

) V(x'). (4)

The plus sign corresponds to outgoing (radiation) bound-
ary conditions, while the minus sign corresponds to in-
coming boundary conditions. Finally, we define y" = y—exp(ike x).

An essential feature of our approach is the extraction
of the potential from the low-frequency asymptotic be-
havior of the wave field y+. The required formula can
be found as follows. First, for sufficiently small k and
with mild conditions on V, the wave equation [Eq. (2)]
can be solved by iteration. Consequently, the wave field
may be expanded as y=yo+iky~+O(k ) and y"
=y2'k +O(k ). We note that the iteration shows that

But Go+ (k =0, . . . ) is the Green's function for the Lapla-
cian [set k =0 in Eq. (3)]. Consequently, operating on
both sides of (4) by 5 yields

V(x) =ay2'(e, x).

Equation (5) is a crucial result in our approach. The use
of low frequencies is a significant departure from meth-
ods which focus primarily on the wave-front condi-
tions.

If we could compute yq+"(e, x) from the scattering
data, the inverse problem would be solved. Consequent-
ly, we look for an equation which relates the wave field
and the scattering amplitude. Such an equation is

y (k, e,x) =y (k, e, x) +ik(2z) 'g d e'A(k, e', e)y (k, e', x). (6)

Here the scattering amplitude, A, is defined by the large-
(x —=

r
x

r
) asymptotic behavior of y+":

y+"(k, e,x) =A (k, x,e) e '""x '+ O(x ), (7)
where the direction of scattering is x =x/x.

Equation (6) was proved in Ref. 10 for the wave equa-
tion. We focus on it because a similar equation was used
in the solution of the inverse problem for Schrodinger's
equation. Naively (6) is a promising candidate to relate
y2+" and A. However, Eq. (6) cannot be used directly
to determine @2+" because 4 vanishes as k in the limit
k 0. Consequently, Eq. (6) for k =0 is merely
@2+ = y2 which does not directly relate @2+ to A.

Nonetheless, Eq. (6) is still essential. The problem is
that we have not, up until now, exploited the causal
structure of the problem, an element which seems essen-
tial in exact inverse scattering. This causal structure is
clearest in the time domain. We take the Fourier trans-
form (FT) of Eqs. (2) and (6) using

u —(t, e,x) =(2n) 'J"dke '"'y —(k, e, x). (8)

r

Similarly, u —"=FT(y—"). As discussed by Rose and
co-workers, ' "u + is the wave field in the time-domain
representation and is generated by an incident 6-function
plane wave 8(t —e x).

The causal structure of the problem and its relation to
(6) will now be sketched. In the absence of a scatterer,
u+(t, e, x) would be 8(t —e x). Consequently, in this
case u+(t, e, x) =0 for t & e x). Now consider the case
when a scatterer exists, but with c(x) & 1. Since the ve-
locity is less than that of the embedding medium, the ini-
tial wave front can only be slowed down. Thus, the first
excitation at a point x due to the incident pulse can only
occur at times later than or equal to t =e.x, and for
t & e x both u+(t, e, x) =0 and u+"(t, e, x) =0. We
define u =FT(y ). From the Fourier transform of
(2) (see Refs. 10 and 11), it follows that u (t,e, x)
= u + ( —t, —e,x). Consequently, u (t,e,x) and
u "(t,e,x) are zero for t & e x.

Thus, the Fourier transform of (6) can be written for
t &e xas

p OO

u+"(t, e, x) = (4tr ) '„dkik„,d e'A(k, e', e) y (k, e', x) e (9)

Here we have used u (t, e,x) =0 for t & e. x. Since u+"(t, e, x) =0 for t & e x, Eq. (9) can be integrated in time forme.x to infinity to obtain y2' which determines V in Eq. (5).
Equation (2), (5), and (9) are the promised set of self-consistent equations. Their simultaneous solution (V, y)

solves the inverse problem in the sense that the scattering amplitude generated by V(x) for a given incident direction is
identical to the prescribed data.

Little is yet known concerning methods of solving Eqs. (2), (5), and (9). A typical (although possibly naive) method
for attempting to find a solution is to iterate the questions. Iterative methods, when they work at all, often converge
rapidly. Iterative solutions of self-consistent equations are found in many areas of physics. Examples are the Hartree
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V(x) =(2tr ) 'Red„" dke '"'*J,d e'A(k, e', e)k fthm+*(k,
—e', x).

and Hartree-Fock equations' of atomic and molecular
physics. 1.QQ

An iterative scheme might proceed as follows. Guess
a potential called Vo(x). Then use Eq. (2) to generate a
new field, called ter+ from Vo(x). This field y+ is sub-
stituted on the right-hand side of (9) and yields an esti-
mate for u+ . Upon Fourier transformation we obtain
new estimates y+ and @2+ . These are then substituted
in Eq. (5) to yield a new estimate for the potential. Call
it V&. Schematically, )

Eq. (2) Eq. (9) Eq. (5)
Vo(x) y+ ty Vt (x) . . . . (10)

This process can then be iterated. If the iterations con-

verge, a solution to the problem is obtained.
Equation (9) may be inconvenient for numerical cal-

culations since it contains the 6' function and possibly Q.Q Q. 5Q

other distributions. However, Eqs. (5) and (9) can be
combined in a way which avoids this difhculty as we now FIG. 1. Test velocity profile (solid line) and reconstructed
describe schematically. We define p+ =ttf+"/k, and its velocity profile (dashed line).

Fourier transform q
+ =—FT(p + ). Then we proceed by

(1) subtracting exp(ike x) from both sides of Eq. (6);
(2) dividing the resulting equation by k; (3) Fourier transformation to the time domain as in Eq. (8); and (4) using
the causal condition q (t,e, x) =0, t (e.x. This leads to an equation for q similar to Eq. (9). Using the fact that
yz+"= f dtq+"(t, e, x) together with Eq. (5) one obtains

The self-consistent process now reduces to solving Eqs.
(2) and (11) simultaneously. Little is known about ob-
taining solutions to these equations in the general case.
However, an approximate solution of (2) and (11) in the
weak-scattering case is consistent with an inversion
method based on the Born approximation. '

Equation (11) is reminiscent of a number of other for-
mulas that have appeared in the inverse scattering litera-
ture. For example, it bears some resemblance to an ap-
proximate formula based on the distorted-wave Born ap-
proximation. ' A formula giving the potential in terms
of the data and the wave field was also found by Deift
and Trubowitz for the case of the one-dimensional
Schrodinger equation. They called their equation the
trace formula; it is the foundation of their inverse

scattering method. For the case of the three-dimensional
Schrodinger equation, a formula with the same structure
as (11) was derived by Newton. ''-

Some preliminary work has been done to determine if
an iterative solution of Eqs. (2) and (11) is feasible.
Namely, the numerical calculation of Eq. (11) has been
studied for spherically symmetric potentials supposing
that the correct y+ is known. Spherical symmetry al-
lows one to perform the integration over angles analyti-
cally by expanding in spherical harmonics. We report
results for the following test case. Namely, the velocity
is set equal to 0.50 for r (a and to 1.00 for ) a. The
wave field and its derivative dy/dr are assumed to be
continuous at r =a. The k integration is obtained by
discretization and evaluation of Eq. (11) after expansion

in spherical harmonics. Our grid points for the integral
are chosen at ka =0.00, 0.10, 0.20, . . . , 10.00. The ve-

locity profile obtained from the resulting V(x) is shown

by the dashed line in Fig. 1. Generally, the agreement
between the exact and the computed velocity profiles is

quite good. The rounding near the discontinuity and the
small oscillations are presumably due to the cutoA in the
evaluation of the k integration at ka =10.00.

Several comments are in order. First, the proposed
method requires data which depend on only three vari-
ables: i.e., the scattering amplitude for one direction of
incidence, all directions of scatter, and all wave vectors
k. This is in contrast to Newton's exact method for
Schrodinger's equation where the required data depend
on five variables. Second, in solving the self-consistent
equations, the most labor will be required to solve the
wave equation. The other equations are quadratures.
This is a desirable feature since considerable eAort has
gone into optimizing solution methods for the wave equa-
tion. Finally, a similar set of self-consistent equations
can be written down for the three-dimensional inverse
scattering problem for Schrodinger's equation. These
equations would be the Lippmann-Schwinger equation,
Eq. (9) of this Letter, and the equation which relates the
potential to the wave front ' [see Eq. ( 3.2) of Ref.
11].
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