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We point out that, on very general grounds, experiments with directionally collimated beatns (of neu-
trons or other particles) incident on passive targets cannot distinguish between their coherent wave-

packet structure and the incoherent mixing due, for example, to multiple emitters or to interactions with
other particles in the source.
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Discussions of atomic and subatomic interactions gen-
erally assume that the interacting particles start in
wave-packet states which have respectable enough prop-
erties so that the usual 5-matrix formalism applies. We
do not believe that this assumption has led to incorrect
results. Nevertheless, it is of some interest to study the
wave-packet properties of actual particle beams. At-
tempts to do this have been reported in the recent litera-
ture, ' and have led to some discussion. Of course,
wave packets as pure states, or coherent superpositions,
are the exception rather than the rule in practice. Most
sources have such a statistical character that only a mix-
ture of states can adequately represent our understand-
ing of the beam.

We point out in this Letter that, on very general
grounds, experiments with directionally collimated
beams (of neutrons or other particles) incident on pas-
sive targets cannot distinguish between their coherent
wave-packet structure and the incoherent mixing due, for
example, to multiple emitters or to interactions with oth-

er particles in the source. Our conclusion holds very
generally subject to two restrictions for experiments per-
formed with incident unidirectional waves. First, the
transverse components of momentum necessary to con-
fine the initial beam must be negligible on the scale of
the experiment. That is, an incident momentum-space
wave packet p(k) =p(e3k, + k~ ) is replaced by

a(k) =J dk~y(e3k, +k~),

where the vector k in a(k) is one dimensional, k=e3k„
and where we also assume that k, may be limited to pos-
itive values. Second, the target must be describable as
a pure state of almost definite energy, or as an in-
coherent superposition of such pure states.

We illustrate the distinction we have in mind by a sim-
ple interferometer experiment performed on a light beam
emitted by a gas of excited atoms. For purposes of illus-
tration, we may take for a component of the electric field
emitted by each atom

a;exp[i[k;(x —x;) ck; (t —t; )] —
—,
' I [t —t; ——(x —x;)/c)I for c(t —t;) ~ x —x;,

,0 for c(t —t;) & x —x;,&, (x, t) ='
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where x; and r; are the place and time of excitation, 1/I is the lifetime of the emitting atom, k; and ck; are the wave
number and frequency of the emitted line, and a; is a constant proportional to the dipole strength of the emitting atom.

The interferometer will split the beam coherently into two parts, and bring the parts together with diA'erent path
lengths corresponding to combining the wave function at two points x ~ and x2 with Ax =x2 —x ~.

The integrated Aux, P;, will be given by

P;=
I (2)1+cos(k; hx) exp

—r!ax
l

2c

and the interference pattern will become blurred beyond a path difference Axo=2c/I, the coherence length of the radi-
ated wave packet.

There is, however, a second effect which also blurs the pattern: The thermal longitudinal motion of the atoms shifts
the line according to k; =ko(1+v;/c), leading to an average P

P ~ laol'
I

1+cos(k0hx) exp —I" lax! , ~T
exp —(wx), k02

2c 2mc2

where K is Boltzmann's constant, T the absolute temper-
ature of the gas, and m the mass of the radiating atoms.

Clearly the two efr'ects are, in general, indistinguish-
able without a theoretical analysis such as we have giv-
en. The first factor multiplying the interference term
cos(kohx) indeed comes from the wave-packet coher-
ence length; the second reflects the eAect of an in-
coherent superposition of sources. The combined eAect
is uniquely determined by the wave-number distribution
of the beam.

This result is well known as applied to optical phenom-
ena, and is equivalent to the Wiener-Khintchine theo-
rem. (See, for example, Born and Wolf. ) We turn next
to a general discussion of interference experiments in

quantum theory, where we will see that the same result
holds.

We may characterize the incident state by a "wave
function"

@;=J"dka(k) l k, n),

where n is the initial target state, of energy t. , and the k
integration is restricted to a single direction —the direc-
tion of propagation of the wave packet.

If @ represents a pure state, a(k) is a function. If not
(and that is why we have put "wave function" in quotes),

!
the average a(k)a*(k') must be set equal to the density
matrix p(k, k'). Note that l a(k) l =p(k, k) is the
wave-number spectrum of the incident beam. Of course,
the density p must also characterize the spin con-
figuration of the beam. We suppress spin variables in

the following.
The beam is manipulated by a sequence of mirrors,

transmitters, scatterers, etc. (the target). The system
emerges in a final state

PI U~ dk a( k)
l k, n),

f

=„dk„dk/g l kr, n/)(k/, n/ l
U

l k, n)a(k), (5)
flI

where the U operator, assumed known in this analysis,
transforms the incident plane-wave state

l k, n) into the
corresponding outgoing wave eigenstate of the Hamil-
tonian.

The number of incident neutrons per unit area at the
point I is

dN (+;,j(x,r)+;) edr,

where e is the beam direction, N the total number of in-
cident particles, and j (x, r) the probability current. We
use the formula

(k'l j(x, r)
l
k) = exp(i j(k —k') x —[c0(k) —ro(k')]r}),6 (k+k')

2m

which yields

dlV t, ~, " 6(k+k')=1Ve. J~ dk' a *(k') dk a (k) expIi(k —k') x}2z8(cu —ro')
dA 2&1

(7)

=2~+„ l a(k) l
'dk,

according to our restrictions on the nature of the wave packet. The ensemble average

l
a(k)

l

' =p(k, k).
The number of final particles crossing a detector of area 6A is

SX =XSA Jr dr (e&, j(x, r )eq),

(1O)

952



V()LUME 59, NUMBER 9 PHYSICAL REVIEW LETTERS 31 AUGUST 1987

or

trt (kf+ k/)
t5/V =/VSA. dk i dk' dk/ dk/+exp(i(kf —kf). x1

nf

x &k/, nf! U! k n)&kf'nf! U! k', n)*2tr8(cu(k) —cu(k')) a*(k')a(k) (12)

or

kf+ kf
RV =/Vt5A. g J dkf J~ dkf J dk expIi(kf —kf'). xj&k/, n/! U! k n&&kf', nf! U! k, n&*p(k k).

nf
(i3)

The energies co(k) and co(k') rather than co(kf) and
cu(k/) appear in the matrix element of (tpf, j(x, t)+f),
since U! k, n) is an eigenstate of the Hamiltonian with
the incident energy, and the time dependence of the
operator j is

j(x t) e™r~j(xO)e iHt/h

Note also that, contrary to its appearance, Eq. (13)
does not depend on the location of the origin of the coor-
dinate system since the matrix elements of U cancel out
any such dependence.

Thus, just as in the earlier example, the ratio

d/V /dA! s„,. i

d/V/d+
I incident

depends only on the wave-number spectrum, ! a(k)!
=p(k, k). The wave-number spectrum itself will imply
some restrictions on the nature of the wave packets mak-
ing up the incident beam. For example, a model of the
beam as a completely incoherent mixture of individual
wave packets, y;:

!
trains in the states y;. Clearly, no upper limit on the
lengths of individual wave trains can be deduced from
p(k, k).

The considerations presented are based on convention-
al stationary-state scattering analysis, appropriate to an-
alyze any passive configuration of an interferometer. Of
course, time-dependent apparatus, including time dis-
criminated counting and initial beam chopping, could be
used to prepare artificial wave packets and to measure
their interference efIects. These experiments, however
interesting themselves, would not necessarily produce
evidence bearing on the state of the neutrons in the in-
cident beam of radiation.
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V =+, a;til;,

with

(i4)

and

QiQj ~ij Pi ~

, p;=1

(i 5)

(i6)
has the property

(q —q)'=g, p;(aq;)'+g, p;(q; —q)',
where q is any observable, q; its mean value, and (Aq;)
its variance in the state tlt;. We note that Eqs. (15) and
(16) will always hold for those ttr s which diagonalize
the density matrix. In addition, they may hold for physi-
cal reasons with other sets of wave functions, as in our
example above [Eq. (1)]. Equation (17) shows that the
ensemble variance of any observable is the sum of the in-
dividual variances (Aq;) averaged over the ensemble
plus the ensemble variance of the individual averages q;.
In particular, with q =k, the wave number, we see that
the overall variance (k —k) ~ average of the individu-
al wave-packet variances (Ak;), and hence will in gen-
eral limit from below the lengths of the individual wave
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4The transverse momentum k& necessary to confine the ini-
tial beam is restricted to k~. L~&&1, where L& is the overall
effective transverse dimension of the apparatus. For the k& to
be negligible, we must have k&/k, (&1 (where k, is a typical
longitudinal wave number) and the transverse spreading
hk~t/m (&L&, with t the time of propagation through the ap-
paratus, t —L/V=Lm/hk„where L is the eAective longitudi-
nal dimension of the apparatus. The restrictions on k& are
then summarized by the inequalities

k, L ~/L )) k ~ &) 1/L ~,

which are clearly consistent provided k, L&/L »1, a condition
which is very well satisfied for almost all experimental arrange-
ments.
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