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Shaking-Induced Transition to a IVonequilibrium
State

FIG. 1. Model potential is infinite at either end of, and
below, ramp. Gravitational field and random force with fric-
tion ( exist above ramp.

Rosato et al. ' have simulated a binary system of disks; N

upon periodic shaking in the presence of gravity, the
+1larger disks rise to the top. This occurs because, as the

system relaxes from each shake, the kinetics for the large
disk to descend are very slow —requiring an (unlikely)
collective motion of many small disks. Here, we present li,
a simpler model, consisting of noninteracting particles
and a static potential, which exhibits this evolution away
from equilibrium. The particles are periodically excited,
allowed to diAuse back into local potential minima, yet
particle density "climbs" toward the global potential
maximum.

Suppose that noninteracting particles of mass m move

in a potential V(z) =mgz above a hard, sawtoothed ramp (see Fig. 1). Above the ramp a medium at temperature T
provides a constant friction g. Periodic "shaking" involves lifting particles to a height Z & H+hp every r seconds.
sume that mghp» kT and hp)) Hl p/L, so that the rate for activated barrier crossing is small; much smaller than I/r. I f
one assumes Smoluchowski dynamics, particles dilfuse from (xp, Z) according to

p(x, z, t) = (4trDt) ' exp( —[(x —xp)'+ [z —Z+ (mg/() t] ']/4Dt),

mgh, z;
kT (2)

where D =kT/g The distan. ce from Z to the tip of the ith barrier is Az; =Z —[(H/L)ilp+hp]. In the limit
(2hz;kT/mg) 't « lp, particles diffuse a tiny fraction of the horizontal distance between barriers i and i +' 1 in the time
for the center of mass of the distribution p to descend the height hz, . Defining E—:—,

'
mgZ, if Z(kT/E)'t « lp, the

diA'usion front changes negligibly as the sphere of probability density descends past the ith barrier. If rapid recrossings
of the barrier are rare, particles on the left of the barrier are eA'ectively trapped in well i, on the right in well i +1, and
the uphill rate constant is particularly simple to derive, as follows.

If a particle begins in local thermal equilibrium in well i, after one shake, the fraction of this density which diA'uses

uphill into well i +1 is found to be
i/2 i/2

mgh, z; hpf exp y erfc(y) dy.kT lp "o Ip

If r is long enough for particles to equilibrate locally,
Eq. (2) allows us to write a master equation for p;, the
probability that the particle is in well i in a continuum
limit (t)& r):

dp/dt=k; (p; (
—kp;, 1&i &N;

dp)/dt = —k(p), dptv/dt =k~ —(p~ —)t,
(3)

where the uphill rate constant k;=f;/r Because of bar. -

rier asymmetry, downhill motion is (as in Ref. I) negli-
gible. Equation (3) can be solved via a Laplacian trans-
form. For example, if all particles begin in the ground
state, p;(0) =6;~, then

p, (t) = [F,*F,* *F, ](t) Q k, , (4)

where e represents convolution and F& —=exp( —kjt).
The first passage time for a particle to become trapped in

the Nth, highest, energy well is just p& =g~=, '
k~

A simple case is that of Z» (H/L)Nlp+hp together
with (mgZ/kT) 't hp/lp)) 1, whereupon k; = (2r)
The uphill progress of the particle density is clear from

the solution of Eq. (4) for this case:

p;(t) =(1/2r)' '[t' '/(i I)!]exp( —t/2r), —

i &N (5).
Certainly, if the shaking stops, a Boltzmann distribu-

tion of particle density is established; the time scale for
this is (mk T) 't [1+exp( —mgHl p/k TL ) ] ' exp[(mg/
kT)(h, —Hi./L)].
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