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Dynamic Scaling for the Fragmentation of Reactive Porous Media

Muhammad Sahimi and Theodore T. Tsotsis
Department of Chemical Engineering, University of Southern California, I.os Angeles, California 90089

(Received 17 April 1987)

We introduce a simple model for the consumption and fragmentation of a reactive porous medium,
and investigate various distinct regimes of such processes. The model simulates the reaction-consump-
tion process in a realistic way, and is capable of simulating the entire range of possible kinetic limita-
tions. We show that a dynamic scaling governs the time evolution of the fragment distribution, and cal-
culate the critical exponents; these vary continuously with the reactivity of the porous medium. This dy-
namic scaling may also hold for the fragmentation of a system due to mechanical breakage, such as
grinding of minerals, or stress-induced fragmentation of disordered solids, or of rocks and polymers.

PACS numbers: 47.55.Mh, 05.40.+j, 05.60.+w

Fluid-solid reactions occur commonly in many natural
and industrial processes involving porous media and have
important scientific and technological implications. Ex-
amples include catalyst deactivation, ' noncatalytic
gas-solid reactions, enzyme immobilization, and hin-
dered (restricted) diffusion and reaction in porous cata-
lysts. In many instances the chemical reaction con-
sumes the solid matrix of the porous medium leading
eventually to total consumption and disappearance of the
solid matrix, as in the case of char or coal gasification
and acid rock dissolution. In other instances one or
more reaction products are deposited on the solid matrix
resulting in decreased intrinsic reactivity and blockage of
the porous structure. This is the case with catalyst deac-
tivation. It is the first problem that is of interest here.

In this Letter we analyze the consumption of a porous
solid by a chemical reaction between the solid matrix
and a reactant and the resulting changes in the structure
of the solid. The porous solid is represented by a per-
colation cluster (i.e. , each site of the lattice belongs to
the solid matrix with probability p ). To study this
phenomenon one has to realize that there are two distinct
regimes of the reaction-consumption process. If the con-
sumption rate is limited only by the chemical reaction
rate, then one is in the kinetic regime (KR). In this re-

gime, the concentration of the reactants outside the
porous solid is the same everywhere and the external
solid surface of the porous medium is totally exposed to
the reactants. On the other hand, if the consumption
rate is limited by the rate of diffusion of the reactants,
only the most exposed part of the solid matrix is reached
and consumed by the reactants. As a result even if one
starts with a porous medium with a very irregular sur-
face, the diffusion-reaction-consumption process makes
the external surface of the system smooth. Therefore,
after some time the irregular system develops a very
smooth external surface, which ultimately takes a spheri-
cal shape and its radius shrinks uniformly.

An important consequence of the process just de-
scribed, both in the KR and the diftusion-limited regime
(DLR) when the reactivity is low, is the phenomenon of

fragmentation. If the consumption of the solid matrix is
continued for a long enough time, it will disintegrate into
finite clusters (fragments), which have a wide variety of
shapes and masses. If the reaction-consumption process
continues even after the initial fragmentation has taken
place, the number and mass of the fragments will even-
tually decrease with time. This decrease in the number
of clusters is somewhat similar to cluster-cluster aggre-
gation (CCA) processes, for which a dynamic scaling
for the number of clusters of a given size has been
developed. ' There are, however, significant difI'erences
between the phenomenon studied here and that of CCA.
Whereas the system in the latter process is conserved
(i.e. , total number of occupied sites does not change),
and a large fractal structure is eventually formed, the
former phenomenon is "dissipative" in the sense that the
density of occupied sites decreases with time and eventu-
ally vanishes, so that it can be considered as a disaggre-
gation process. As may be obvious, such disaggregation
and fragmentation processes are also diAerent from
polymer-chain degradation processes, ' ' where a com-
pletely diferent mechanism is responsible for the degra-
dation of the polymer chain. Despite these difI'erences,
we show that a dynamic scaling holds for the distribution
of fragments.

As the process time increases the number of fragments
also increases, reaches a maximum, and then ultimately
vanishes as the fragments are consumed. Of course each
individual cluster does not have to be in an environment
where a specific regime is dominant, because the reac-
tants may reach some of the fragments faster and easier
than others. However, we neglect such complications
here. To describe the evolution of fragment size distri-
bution and the decrease in the number of clusters we hy-
pothesize that

n, t "s 'f (s/t'—),

where n, is the number of fragments (per lattice site) of
s sites and w, z, and r are (presumably) universal critical
exponents. Here f(x) is the scaling (or cutoff) function
whose shape is presumably universal. Equation (1) has
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w ) (2 —r)z (3)

Moreover, the mean cluster size S(t), which is given by
S(t) —t' tanishes in the present problem and thus z & 0,
in contrast with the CCA processes where S(t) ~ as
t ~ and thus z &0.

We have investigated this phenomenon in both the KR
and the DLR within a unified model, and have estimated
the exponents w, z, and i using the following model. We
start with a L network (d is the dimensionality) and
generate the largest percolation cluster, ' which repre-
sents the solid matrix, and introduce reactive molecules
(e.g. , oxygen) on the external surface of the lattice, far
from the solid matrix. These molecules perform an un-
biased random walk on the empty sites of the lattice, and
interact with each other with hard-core interactions and,
thus, double occupancy of the sites of the lattice is not
allowed. If a molecule hits a solid site it reacts with it
with probability r, which essentially represents the reac-
tivity of the solid matrix. If reaction does take place, the
reactant molecule disappears and a fraction of the solid
site is consumed. Since in our model we use finite lat-
tices in order to represent real systems (e.g. , char parti-
cles of micron size), each site should represent a macro-
scopic mass unit. Thus each site has to be hit by the
molecule, in a reactive collision, M times (where M is a
model parameter) before it is totally consumed. The re-
sults presented below are for M = 1; the results for
M & 1 and for cases where each site has diferent reac-
tivity (i.e., the probability of reaction changes from site
to site) will be reported elsewhere. '

The overall behavior of the system strongly depends on
the reaction probability r. If r=1, then only the most
exposed part of the solid matrix ("hottest sites" in the
language of growth processes' ) are consumed at the ini-
tial stages of the process. The net efIect is the removal
of all irregularities of the external surface of the solid
matrix, making its shape smooth and regular. This is
indeed what we find in our simulations, which is also in

agreement with simulations with other model systems. '

As a result, no major breakup of the solid matrix takes
place and no fragments of appreciable size are formed.
On the other hand, if r is small the reactant molecules
are able to penetrate deep into the pore space and hit
and consume the weak points of the solid matrix, which

the same form as that proposed for the CCA processes. '

However, in the CCA the total number of clusters N(t)
decreases rnonotonically, whereas in the present model
N(t) has a maximum .Since the density p of the occu-
pied sites (e.g. , the solid sites in the present model) is

given by

—
z+lf( /tz)d t

—w+(2 r)z (2)
0

it follows that for the CCA one has w =(2 —r)z, since p
remains constant. In the present problem p 0 as

~, which only means that

are links in the percolation cluster' that connect the
large blobs of multiply connected sites. As a result, for
small r solid-matrix fragmentation takes place and many
clusters with a wide variety of shapes and sizes appear
and the dynamic scaling discussed above develops. It is
obvious that the limits r =1 and r=0 represent, respec-
tively, the DLR and the KR. In particular for very low
values of r and because of the deep reactant penetration
into the pore space, the concentration of the reactant in
the vicinity of the solid matrix becomes everywhere uni-
form, i.e., one is in the kinetic regime.

The most interesting part of the process is when one
starts with the largest percolation cluster at the percola-
tion threshold p, (where' p, =0.59275 for the square
lattice and p, =0.3116 for the simple-cubic lattice). At
this point the cluster has a fractal structure at all length
scales and, therefore, the phenomenon studied here can
be considered as an example of breakup and fragmenta-
tion of fractal surfaces. Simulations with p & p, have
also been performed, and the long-time results are simi-
lar to those discussed for p =p, . The exponent that is of
prime interest here is w, because it has recently been pos-
sible' to measure w experimentally for char gasification
processes. Most of our simulations were done on a
square lattice with L =300 and a simple cubic lattice
with L =50, and we typically averaged the results over
10 difIerent realizations of the lattice.

In Fig. 1 we present the variation with time of the to-
tal number of clusters N(t) for diferent values of r (the
results are for the square lattice). Here each cluster has
more than one site. At the beginning of the process
N(t) increases, reaches a maximum, and then decreases
and ultimately vanishes. Around the maximum of N(t)
some small oscillations were observed. This is due to the
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FIG. 1. The dependence of the total number of fragments
N(t) on the time t for selected values of the reactivity r Solid.
lines are guides to the eye.
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FIG. 2. The cluster size distribution n, (t) vs t for s =4. If
n, is plotted for higher values of s, the corresponding curve for
r =1 will completely disappear, because in the DLR no large
cluster is formed.

fact that when a relatively large cluster is hit by several
reactant molecules it can fragment into several smaller
clusters and, therefore, N(t) can temporarily increase.
Eventually of course, all relatively large clusters disap-
pear and N(t) decreases monotonically. For r =10, a
great number of clusters, some very large, are formed.
For very small values of r (e.g. , r =10 ) the system
reaches a steady state, which means that r =0 does
indeed represent the KR. In the limit of r =1, no major
breakup of the original large cluster takes place, and all
of the clusters are very small (no more than a few sites).

In Fig. 2 we present the cluster size distribution at a
fixed s for various values of r. Again there is a qualita-
tive difrerence in n, as r varies. One finds that the ex-
ponent w depends on r. For example, w = 10 for
r =0.01, whereas w=0. 3 for r =1. We also determined
the cluster distribution n, for fixed values of t and deter-
mined the exponent z, and verified that the inequality
(3) is satisfied (details will be given elsewhere' ). As
was the case for w, the exponent z also appeared to de-
pend on r. It should be pointed out that if we plot the
cluster size distribution at a fixed but large value of s
(e.g. , s =15), the curve corresponding to r = I will com-
pletely disappear, because in the DLR no large cluster is
formed. These features are all in agreement with experi-
mental observations. ' ' This is the first time that a
unified model can accomplish this.

One of the outstanding problems in interpreting the
existing experimental data in gas-solid reactions has
been the nature of the regime in which the reaction, and
the consequent consumption of the solid, takes place.
Our model and simulations can provide a definitive

answer to this problem. As discussed above, by varying
the reaction probability r one can span the entire spec-
trum of the reaction-consumption regimes, from the KR
(for r=0) to the DLR (for r= 1). For example, we per-
formed our simulations on a simple-cubic lattice, with
the initial fraction of the solid sites @=0.65 and the re-
action probability r=10 . We then obtained w=1,
which is in agreement with the recent experimental
data' (details of the comparison will be given else-
where' ). This agreement may indicate that the experi-
mental system was close to the KR, but diftusional limi-
tations were also important to some extent. At this
point, however, this agreement is tentative since a more
sensitive study on the effect of the initial conditions (ini-
tial cluster) should be performed. In particular, one has
to establish clearly that the morphology of a char parti-
cle can be described by a percolation cluster. We be-
lieve, however, that the dynamic scaling proposed here
can, in principal, determine the nature of the regime of
reaction-consumption process. Moreover, the model
developed here predicts, for small values of r, the ex-
istence of a maximum in the reaction rate (fraction of
solid sites consumed per unit of time) at some well-
defined value of conversion (fraction of sites consumed
up to time t), in agreement with experimental observa-
tions. ' ' Thus, all important features of such processes
are reproduced here.

We note that a simple model of fragmentation of re-
active porous media, in the KR, has recently been
developed in which one identifies the solid sites
which are adjacent to the external (open) perimeter
sites. These sites are all consumed in one unit of time
and redesignated as open space (pores). The new solid
sites that are adjacent to the perimeter sites are now
identified and consumed and so on. Thus one has a sim-
ple model of disaggregation for random surfaces. Al-
though a dynamic scaling also holds for fragmentation
during this process, ' the results do not agree quantita-
tively with the experimental data, and adjustable param-
eters must be introduced in order to make the agreement
quantitative.

Finally, we note that it has recently been suggested
that the surface of fractal structures requires an infinite
hierarchy of fractal dimensions for its complete charac-
terization. ' To measure these fractal dimensions one
uses particles following random-walk trajectories. Each
particle is started oA at a random position outside the
area occupied by the fractal system and its trajectory is
followed until it reaches a perimeter site (a process simi-
lar to what is described here). A measure of the surface
size can then be obtained based on the distribution of the
total number of times each perimeter site has been hit
after a large number of diAusing particles have been
released. Since in the present problem the reaction rate
is proportional to the total number of surface sites that
have been hit by the diAusing particles, we expect that in
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the DLR the scaling of the reaction rate is directly relat-
ed to the moments of the distribution of the number of
times that perimeters sites have been visited. ' On the
other hand, we do not see any direct connection between
the exponents w and r and these fractal dimensions, as ~
and ~ are dynamic exponents, whereas such fractal di-
mensions are static quantities.

In summary, we have introduced here a model for the
fragmentation of chemically reactive surfaces. The mod-

el reproduces all of the important features of such phe-
nomena that have been observed experimentally. We
have shown that a dynamic scaling governs the evolution
of the fragment size distribution. Although this dynamic
scaling was developed for reactive surfaces, it also holds
for any process in which a fragmentation of the solid ma-
trix takes place as a result of mechanical breakage, '

such as grinding of minerals or stressed-induced frag-
mentation of rocks or of polymers and disordered
solids; our preliminary results' support this assertion.
A detailed study of these phenomena will be reported
elsewhere. '
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