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Topological Defects of Wave Patterns

P. Coullet, ' C. Elphick, L. Gil, and J. Lega
Laboratoire de Physique Theorique, Pare VaIrose, 06034 Nice Cedex, France

(Received 26 May 1987)

We identify the defects of waves by means of topological arguments and study them in the framework
of Landau-type analysis. It is shown that they correspond to sinks, sources, or dislocations of traveling
waves, and to dislocations of standing waves.
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Phase transitions are generally associated with the
breaking of fundamental symmetries, and are usually ac-
companied by the appearance of defects. ' Recently, de-
fects in macroscopic systems, such as dislocations and
grain boundaries in convective structures, have attracted
considerable attention; in particular, they seem to
play an important role in the transition to turbulence.
Particularly interesting are defects of wave patterns since
they do not have a strict equilibrium analog. Such pat-
terns can be regarded as leading to a propagatii. e order
in the same way as the appearance of rhythms leads to
temporal order and the appearance of periodic patterns
leads to spatial order, A lot of interest has been recently
devoted to spatiotemporal patterns and associated de-

fects, such as homogeneous oscillatory patterns and their
spiral-wave defects, traveling waves in open flows' or
in confined systems, " ' and standing-wave patterns. '"

In this Letter we study topological defects of wave pat-
terns in the framework of phenomenological amplitude
equations generalizing Newell s envelope equations' via
Landau-type symmetry arguments.

We are interested in systems assumed to be invariant
under rotations, space and time translations, and parity
transformations. We place ourselves in a parameter re-
gion where they undergo an instability with finite wave
number ko and frequency coo. A typical physical quanti-
ty, such as the temperature or the alcohol concentration
in a binary mixture, is then expressed as

T =Re [A (x,y, t ) exp [i (kox + capt ) ] +8 (x,y, t ) exp [i ( —kox + coot ) ]I +

The complex order parameters A and B stand for slowly varying envelopes of left- and right-traveling waves propaga-
ting in the x direction, and satisfy coupled Landau-Newell-type equations which read in appropriate scaled form:
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where p measures the deviation from the critical situa-
tion; c, a, b, and g describe dispersive effects and are sim-

ply related to the imaginary part of crq, p and 8 are asso-
ciated with nonlinear renormalization of the temporal
frequency, and y is the competition parameter between
traveling and standing waves, corresponding to nontrivial
homogeneous solutions of Eqs. (2). The symmetries of
the original system determine the form of these equa-
tions which are then invariant under the following trans-
formations: A 2 exp( —i &b) and 8 8 exp(iN),
which reflects the invariance under space translations;

Aexp(i+) and 8 Bexp(i+), which rejects the
invariance under time translations; x —x, A 8,
B A, and J —y, which reflects the parity symme-
try.

Equations (2) possess two types of nontrivial solutions:

A =Q, exp[i(A, t+y, )], 8=0,
A =0, 8 =Q exbp[i(& t+bpb)],

(3a)

(3b)

where Q, =Qb =p and 0, = Ab = —Pp; and the stand-
ing waves,

A =Qexp[i(nt+y, )], 8=exp[i(n t+yb)],

where Q =p/(1+ y), 0 = —(P+6)/(1+ y). The form-
er are stable with respect to spatially homogeneous per-
turbations when y & 1, the latter when —

1 & y & 1. In
both cases, p, and pb are arbitrary phases.

A nonhomogeneous solution corresponding to a left-
traveling wave with a wave number slightly different
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from ko reads 3 =Q, exp[i(ft, t —
px+ (b, )], B =0 where

Q, =p —p, and A, =pc —Pp —(a —P+e)p . Such a
solution is stable with respect to small perturbations
when

+ 2

Dll 1+aP —2p + eP,
p p

D = —P (I+aP)+Peg,
0

and

ayyyy I +aP+ (1 +P )
1 (ap —ejko)

40 2(p —p )

are strictly positive parameters. In what follows, we con-
sider a range of parameters for which traveling waves
are found to be stable.

Equations (2) also possess a more general class of
solutions:

lAl

~ ~ L C I 4 ~ I ~ a s ~ I ~ a a ~
(

~ ~ I ~ I 4 ~ I ~ a ss ~ t ~ ~ I ~ I a L a a t ~ ~ I ~

W =Q. exp[i(n. t —px+ tb. )],

B =Qbexp[i(&bt+qx+pb)],
(5)

FIG. l. ! 8! and ! B! as functions of x for (a) a sink and
(b) a source of traveling waves.

where

a
y2

and Qb and Ab are obtained by the substitutions p q
and q p. They correspond to standing waves when

p =q. In the following, we place ourselves in a parame-
ter regime where standing waves are stable with respect
to small perturbations. This corresponds to 1+a()6
—P)/(y' —1) & 0 when p =q =0.

Besides homogeneous and quasihomogeneous waves
described so far, more singular solutions of Eqs. (2) play
a very important role in real-life wave formation. These
solutions are the analog of defects in symmetry-breaking
phase transitions and are related to the nontrivial topolo-

gy of the manifold of the stable homogeneous solutions
of Eqs. (2). In the following, we describe these defects
by means of both topological arguments and numerical
experiments performed on Eqs. (2). The numerical
simulations have been performed on Cray-1 supercom-
puter with a spectral code with 80x80 collocation points
and a "slaved frog" ' temporal scheme.

(i) Traveling wave defects -When ) & 1.
—, the mani-

fold of stable homogeneous states (At) is composed of
two disconnected circles parametrized by the phases tb,
and pb of the left- and right-traveling waves [see Eqs.
(3)]. From the nonconnectedness of At, it follows the
existence of topologically stable kinklike defects, corre-
sponding to a point defect in one spatial dimension and
to a line defect in two dimensions. In what follows, we

!
consider only the cases of a defect line either parallel or
perpendicular to the wave vector. In the first case, the
kink-type defect connecting (2 =Q, exp[i(A, t —px)]
B =0) as x —~ to (2 =0, B =Qb epx[i(ft tb+p )x])
as x +~ represents a sink. of traveling waves, while
the antikink-type one, connecting (8 =0, B=Qbexp[i
x (flbt+px)]) to (2 =Q, exp[i(o, t —px)l, B =0) is

associated with a source of traveling waves. In both
cases, at the defect's core, A and B are finite (see Fig. 1).

The asymmetry between the source and the sink ob-
served in the numerical simulation can be easily ex-
plained by the symmetry-breaking propagative terms
+' c(cl/ax) and + (1+ia)(i/ko)(a/ax)(a'/ay ) in Eqs.
(2). Far from the core, the defect reaches its asymptotic
solutions in an exponentially damped oscillatory wave.
We also numerically observe that the final pattern has a
unique wave number, independent of initial states. This
wave-number selection is clearly due to the presence of
defects. Figure 2 shows the temporal behavior of T as
defined in (1) in the case of a sink and a source of travel-
ing waves. These topological defects have been recently
experimentally identified.

The domain wall connecting two traveling waves with
slightly diA'erent temporal frequencies A, and Ab moves
with a velocity v ~ = (A —a —e)6Q/[c+ 2q (P —a —e) ]
and satisfies the following zig-zag-type equation:

(a/at)x=v +D(((a2/ay 2)w —rr)'(a'/ay')x+ry22[(a/ay)w]'(a'Iay')x
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FIG. 2. Diagrams (x, t) for (a) a sink and (b) a source of traveling waves. Dark areas correspond to maxima of T [see Eq. (l)].

where the perpendicular diA'usion coefficient is given by

8
~i

= [(p+ q )/2ko] (I + aA) + egA,

(6I), ) = n. —nb,

and A, a], and o.
2 are given constants, which can be

computed by standard methods.
"Zipper"-like' defects which correspond to domain

walls perpendicular to the wave vector are also found to
be numerically stable solutions of Eqs. (2).

From the nontrivial topology of each of the two circles
of W, it also follows the existence of dislocations. These
topological defects are characterized by their winding
number N. Physically, they correspond to the insertion
of N extra critical wavelengths. As usual, at the defect's
core, the order parameter A (and, respectively, B) van-
ishes (see Fig. 3). We find numerically that the disloca-
tion of the left-traveling wave is stable with respect to
the right-traveling- wave perturbations, which in fact
justifies the use of an equation involving only 4, corre-
sponding to (2) with B =0 (see Ref. 16). Because of the
advective term c(t)A/t)x), the dislocation has a relative
motion with respect to the host wave. This dislocation
motion can be pinned by the underlying propagative
structure, but this eN'ect cannot be studied in the frame-
work of an amplitude analysis.

(ii) Standing wate defects -When —
.—1 & ) & I, the

coexistence of right- and left-traveling waves leads to
dynamically stable standing waves. The order parame-
ters A and B are both finite and consequently the mani-
fold of stable homogeneous states is a torus parametrized
by the phases ttl, and pb [see Eq. (4)]. Standing-wave
defects are thus characterized by two topological charges
(qi tq2), corresponding to the number of extra wave-
lengths added on left- and right-traveling waves. The
elementary defects (1,0) and (0, 1), are called, respec-
tively, "left" and "right" dislocations. At the core of a
left dislocation, the envelope 2 of the left-traveling wave
vanishes and thus, since the envelope 8 of the right-
traveling wave remains finite, one observes right propa-
gation. As for traveling waves, the presence of defects
induces a strict wave-nurTiber selection: Far from the
core, one observes numerically a quasistanding wave,
which belongs to the family of solutions given by Eq. (5),
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FIG. 3.
~
A

~
as a function of x and y showing four

traveling-wave dislocations corresponding to Ã = l.

FIG. 4. (a)
~
A

~
and (b)

~
8

~
as functions of x and y show-

ing four standing-wave dislocations, corresponding to q l
=

1

and q2=0.

886



VOLUME 59, NUMBER 8 PHYSICAL REVIEW LETTERS 24 AUr UST 1987

with p&0 and q =0. We also note that when ~A
~

van-
ishes, ~8

~
reaches its maximum value (see Fig. 4). As

noticed for traveling waves, the core of the left disloca-
tion moves through the box in the x direction because of
the advective term c(r)A/r)x).

The motivation of this Letter has been twofold. First,
we have described wave defects in the framework of
Landau-type analysis. They correspond to sinks, sources
and dislocations of traveling waves, and right and left
dislocations of standing waves. They have a topological
origin just as defects in equilibrium physics. These new
defects are particularly interesting since they are de-
scribed by nonvariational equation. Second, our aim was
to stimulate experimental studies of such objects, espe-
cially in the case of standing waves.
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