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Modulation Instability Induced by Cross-Phase Modulation
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Modulation instability that leads to breakup of intense cw radiation into a train of ultrashort pulses
during propagation in optical fibers occurs only in the presence of anomalous group-velocity dispersion.
It is shown that a new kind of modulation instability can occur even in the normal-dispersion regime
when two copropagating optical fields interact with each other through cross-phase modulation initiated
by the nonlinearity. The quantitative aspects of this cross-phase-modulation-induced modulation insta-
bility are discussed and illustrated by use of a realistic experimental example.

PACS numbers: 42.50.Qg, 42.65.Re, 42.81.Dp

Many nonlinear dispersive systems exhibit an instabili-
ty, known as the modulation instability, that has been
discovered in several branches of physics. ' Modulation
instability is a general characteristic of wave propagation
in nonlinear dispersive media and has been studied in

such diverse fields as fluid dynamics, ' nonlinear optics,
and plasma physics. It refers to a process in which
weak perturbations from the steady state grow exponen-
tially as a result of an interplay between the nonlinearity
and the group-velocity dispersion. In the context of opti-
cal fibers, modulation instability requires anomalous
dispersion and manifests itself as breakup of the cw or
quasi-cw radiation into a train of ultrashort pulses.
Anomalous dispersion is also necessary for solitons '
which result from a balance between the nonlinearity-
induced self-phase modulation (SPM) and the group-
velocity dispersion. Although the observation of modula-
tion instability with cw beams is hampered by the com-
peting nonlinear effects (such as stimulated Brillouin
scattering), it has recently been observed ' under quasi-
cw conditions. These experiments were performed in the
infrared region beyond 1.3 pm in order to operate in the
anomalous-dispersion regime of the silica fiber.

This Letter shows that a new kind of modulation in-
stability can occur even in the normal-dispersion regime
when two or more optical fields copropagate inside the
fiber. The physical mechanism behind this novel phe-
nomenon is cross-phase modulation (XPM) which refers
to the nonlinear phase change of an optical field induced
by other copropagating fields. The XPM-induced modu-
lation instability is of fundamental importance as it sug-
gests the possibility of soliton formation in the normal-
dispersion regime. At the same time, it has practical im-
plications for the propagation of visible radiation in opti-
cal fibers.

To present the main results as simply as possible, we
consider the case of two optical fields copropagating in a

i (BA1/r)z+ i.'g~ BAi/Bt + p aj Aj )
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where j= 1 or 2, vg~ is the group velocity, e~ is the ab-
sorption coefficient, p~ is the dispersion coefficient
(Pi =dvs~ '/de & 0 for anomalous dispersion), and

J
=n 2'&/cA eir (2)

accounts for the fiber nonlinearity responsible for both
SPM and. XPM. In Eq. (2), A,a is the effective core
area and n2=3. 2&&10 ' cm /W for silica fibers. ' The
last term in Eq. (1) is due to XPM and couples the two
waves. It is the XPM-induced coupling that gives rise to
modulation instability in the normal-dispersion regime
where P~ ) 0 for both waves.

To simplify the discussion, we neglect the fiber loss by
setting e~ =0. The inclusion of fiber loss does not change
the basic conclusions of this paper. The steady-state
solution of Eq. (I) is given by

A~ = JP~exp(iiii, ), j=1,2,

where P~ is related to the optical power and the phase

y, =~, (P, +2P, , )z.

(3)

The stability of the steady state is examined by assuming

A, =(JP&+a, ) exp(i'), (s)

where ai is a weak perturbation. Linearizing Eq. (1) in
a i and aq, one obtains

single-mode fiber. In the slowly-varying-envelope ap-
proximation, the field amplitudes 2& and A2 satisfy the
nonlinear Schrodinger equation ' modified to account
for XPM by the addition of a cross-coupling term:

i(Baj/rlz+vg~ 'Ba~/Bt) = —,
'
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where j =1,2. If we assume a general solution of the
form

a, =u, cos(Kz —At)+iv, sin(Kz —At),

where K and 0 are the wave number and the frequency
of modulation, Eq. (6) provides a set of four homogene-
ous equations for u], u2, v], and v2. This set has a non-
trivial solution only when K and A satisfy the dispersion
relation

[(K—n/~„)' —f, ][(K—n/t„)' —f,] =C',

where

fi = —,
' an ( —,

' pin +2y&P, ),

and the coupling parameter C is given by

C =2A'(pl p2y»2P |P2) '" (io

If K has an imaginary part for some values of 0, the
steady state is unstable since a] and a2 experience an ex-
ponential growth along the fiber length. This phenome-
non is referred to as modulation instability' since it
leads to the modulation of the steady-state amplitude.

In the absence of XPM, C=O, and Eq. (8) has the

solution K = A/vs' ~ Jfi for j=1,2. This is the disper-
sion relation obtained previously for the case of a sin-
gle field. In the normal-dispersion regime, pi & 0, and as
a result f, & 0 from Eq. (9). It then follows that K is al-
ways real, and modulation instability does not occur in
the normal-dispersion regime.

The situation is entirely difterent when XPM couples
the two optical fields. Equation (8) shows that K be-
comes complex for specific A values even when both p|
and p2 are positive. This is seen most readily if we

) neglect the group-velocity mismatch and assume vg i= v~2 for the time being. It follows from Eq. (8) that

(K —n/», )'= —,
' [(f +f ) ~ [(f +f )'+4(C' f f )] '/']. —

Clearly K becomes complex if the condition C &ftfz is
satisfied. With use of Eqs. (9) and (10), this condition
becomes

0 (6

1

for modulation instability to occur.
From a practical point of view, it is necessary to ac-

count for the group-velocity mismatch represented by the
parameter

= —,
'

f [(b 1 +b 2) + 12b i b2] '/ —(b 1
+ b2)], (12)

I
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where

b, =(4y, /P, )P,

Thus, for frequencies such that
i

A i ( A„a weak
modulation of the steady state experiences the gain given

by

Figure 2 shows the gain spectra for several values of 6
obtained by use of Eqs. (8) and (14) for the case of
equal powers (Pl =P2 =100 W). Other parameters are
identical to those used for Fig. 1. As 6' increases, the
gain spectrum narrows, shifts to higher frequencies, and

g(n) =2Im(K), (i4)

where Im stands for the imaginary part.
Figure 1 shows the gain spectra for several values of

the power ratio P2/Pi after taking Pi =100 W. [Since
the gain spectrum is symmetric with g( —A) =g(n),
only the positive-frequency part is shown. ] The fiber pa-
rameters P/ =0.06 Ps /m and yj =0.015 W '/m corre-
spond to a realistic situation of propagation in silica
fibers in the visible region near 0.53 pm. The wave-
lengths of the two fields are assumed to diAer only slight-
ly so that Pj, y, , and vgl are nearly the same for j =1
and 2. For this case, g can be evaluated in a closed form
and is given by

I I I I [ I I I I ] I I I I ] I I I I

Pp/P) = 2

g(n) =p] i n i (n —n ) ' 0
0 0.5 1.0 1.5 2.0

where A, is given by Eq. (12). The maximum gain
occurs at A =n, /J2 and has a value of pin, /2. Both
the frequency range i

A
i
( A, and the maximum gain

increase with an increase in the power levels P] and P2.
Since the gain is due to XPM, it vanishes when either Pi
or P2 is zero; i.e., both optical fields have to be present

F R EQUENCY (THz)

FIG. 1. Gain spectra g(n) for several power levels Pi and
P2 of the two beams. Only half of the spectrum is shown since
g( —n) =g(n). The fiber parameters are pi =0.06 ps /m and

yj =0.015 W '/m for j=1,2. The group-velocity mismatch is
neglected.
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FIG. 2. Eftect of group-velocity mismatch 6 on the gain
spectra for the case of PI =P2=100 W. Other parameters are
identical to those used for Fig. 1.

FIG. 3. Variation of peak gain with the power ratio Pz/P~
for several values of the group-velocity mismatch 8. For 8) 2
ps/m, the peak gain becomes nearly independent of 8.

its peak height approaches a limiting value of about 6
m . The main point to note is that the group-velocity
mismatch is not detrimental to the existence of modula-
tion instability. For 8 & 2 ps/m and p~ =pz, the frequen-
cy corresponding to the peak gain is well approximated
by

v = 6/2rrP i. (17)

Furthermore, the peak gain is not sensitive to the
amount of group-velocity mismatch for 6 & 2 ps/m. This
is shown in Fig. 3 where the peak gain is plotted as a
function of the power ratio Pq/P~ for several values of 6
and P~ =100 W.

The results shown in Figs. 1-3 suggest that XPM-
induced modulation instability should be observable un-
der realistic experimental conditions. Consider, for ex-
ample, the case of two beams in the visible region around
0.53 pm with their wavelengths a few nanorneters apart.
The parameter 6=2-5 ps/m for a wavelength difference
in the range 5-10 nm. The peak gain of about 6 m
can be expected for nearly equal powers of 100 W (see
Fig. 3). As a result of modulation instability, the optical
spectra of both beams should develop modulation side-
bands (on both sides) with a frequency separation given
by Eq. (17). For 8=2 ps/m and P =0.06 ps /m, the fre-
quency separation is about v =5 THz (=5 nm at 0.53
pm). The modulation sidebands occur as a result of the
amplification of the noise input provided by spontaneous
emission or vacuum fluctuations. With a peak gain of 6
m ', the amplification factor is exp(6L) for a fiber L
meters long; significant buildup of the sidebands is thus
expected even for a few-meter-long fiber. In the time
domain, both beams develop amplitude modulation with
a period v ' in the femtosecond range (=200 fs for the

example considered above). Thus, modulation instability
manifests itself as a breakup of each cw beam into a
train of ultrashort pulses with a repetition rate of a few
terahertz. Of course, similar to the case of conventional
modulation instability, experimental observation of
XPM-induced modulation instability would require the
use of optical pulses to avoid stimulated Brillouin
scattering. The overlap of both pulses over the fiber
length is ensured if i)&6L.

So far we have assumed that both beams (or pulses)
are incident simultaneously on the optical fiber. An in-
teresting possibility is that the second beam is internally
generated through stimulated Raman scattering. For sil-
ica fibers, the Stokes shift is about 13 THz (12 nm at
X =0.53 pm). The group-velocity mismatch between the
pump and the Stokes waves is 6=5 ps/m. Although the
analysis presented here is not directly applicable (it does
not include the eff'ect of Raman gain), it is possible that
the qualitative features of XPM-induced modulation in-
stability are nonetheless present. Interestingly enough,
the modulation frequency estimated from Eq. (17) is
also about v =13 THz for a 0.53-pm pump. Thus,
modulation sidebands would appear at multiples of the
Stokes shift and may be difficult to identify in the pres-
ence of higher-order Stokes lines.

Another possibility that should be considered consists
of XPM interaction between the two dominant spectral
components of the SPM-broadened spectrum of a single
pulse. This is similar to the phenomenon of optical wave
breaking, ' ' where mixing of two such spectral com-
ponents results in high-frequency oscillations in the
wings of the pulse. At the same time two sidebands ap-
pear in the pulse spectrum, suggesting a connection to
the analysis presented here. In fact, the experimental ob-
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servation'" of such sidebands in the normal-dispersion
regime can be interpreted in terms of the XPM-induced
modulation instability.

In conclusion, XPM that invariably accompanies SPM
in the presence of two or more optical fields is shown to
be responsible for a novel instability. In contrast to the
case of conventional modulation instability, this instabili-
ty can occur even in the normal-dispersion regime of op-
tical fibers and should be easily observable in the wave-
length range of 0.5-1.3 pm. Since the physics of modu-
lation instability and solitons is interrelated, the possibil-
ity exists that XPM can sustain solitons in the normal-
dispersion regime. An application of the theory may be
in the field of sqU. eezing, as evident from the phase-
sensitive nature of XPM in Eq. (6). Finally, it should be
noted that even though the results are presented in the
context of optical fibers, the analysis should be applic-
able to other nonlinear dispersive systems as well and
may find application in diferent branches of physics.

The author is thankful to R. R. Alfano and P. L. Bal-
deck for stimulating discussions.
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