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Nonlinear O(N ) o Model: A Theory with Hidden U(1) Gauge Invariance
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The (1+ 1)-dimensional O(!V) nonlinear cr model is represented as a gauge theory with a U(l) gauge
group. It is remarked that in the quantized version of the theory a dynamical Higgs phenomenon takes
place. On the basis of this fact, we speculate on the existence of a similar gauge-symmetry-breaking
mechanism for vector fields for which no additional fields are required.
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Nonlinear o. models for various reasons have attracted
much attention during the last two decades. They were
first introduced to model the low-energy limit of a theory
with spontaneous symmetry breakdown. ' In the course
of time it was realized that (1+1)-dimensional cr models
have striking qualitative similarities with QCD. The
(partial) list of common features of both field theories
includes renormalizability, asymptotic freedom, scale in-
variance on the classical level broken by an anomaly in

quantum theory, and low-energy behavior which is dom-
inated by local condensates. Because of this and due to
the existence of a rigorous solution, a models serve as a
laboratory for various nonperturbative techniques, for
example, the 1/N expansion, operator-product expansion,
and low-energy theorems. Recently, the interest in these
models was revived in the context of string theory where
they appear in the classical limit.

We shall concentrate on the simplest (two dimension-
al) O(N)-invariant a model which is a free field theory
for a multiplet of fields cr=(o|, . . . , cr„) satisfying the
constraint o. =l. Any constrained system can be rep-
resented in two equivalent ways ': (1) via introduction
of the Lagrange multiplier into the Lagrangean, and (2)
by a gauge-invariant Lagrangean in which gauge trans-
formations are generated by constraints. The nonlinear
a model is usually represented in the first form while
electrodynamics (which is another constrained system) is
usually represented in the second form.

In this Letter, we find for the a model an explicit form
of Lagrangean invariant under U(1) local gauge trans-
formations. We remark that in this theory the phe-
nomenon of dynamical mass generation (in the context
of gauge theory, the dynamical Higgs mechanism) oc-
curs.

Our line of reasoning will be parallel to that leading to
the description of electrodynamics in terms of potentials,
and therefore we shall closely follow the analogy between
these systems in this Letter. Classical electrodynamics is
described by the Hamiltonian

H(E, A) =
2 E; + 4 (V;Aq —VJA;),

which commutes (has zero Poisson bracket) with the

Gauss constraint

C(E) =V;E; (2)

The potentials A; are conjugate to the canonical vari-
ables E;. The constraint function C(E) generates the
U(1) group of (time-independent) canonical transforma-
tions

SA, = 4„Z(x)C(E)l =V,X(x), (3)

which leaves the Hamiltonian H(E, A ) invariant.
For the o model the Hamiltonian which leads to cor-

rect equations of motion may be taken to be

H(o, tr) =
2 cr tt; 8;~. — tr~+ 2 Vcr, Vcr;,

C'2
(4)

which commutes with the constraint

c(~) = —,
' (~' —1). (5)

The corresponding transformations are

6cr; = fcr;, Z(x)c(o)j =0,

8tr; = ftr;, Z(x) C(cr)I =Z(x) cr;

The constraint can be incorporated by introduction of
the additional term h =aC to the Hamiltonian, where a
is a Lagrange multiplier. In electrodynamics

h =A pc(E), (7)

h =ttc(o. ). (8)

Now the Hamiltonian H+h is invariant under the full
(time-dependent) gauge group U(1), provided that the
Lagrange-multiplier field transforms as

Ba = —X. (9)

In electrodynamics, the gauge-invariant Lagrangean
L(A, A) =

4
F2 is obtained by Legendre transformation

of H+h expressing E via 4 and 2 from the Hamilton

where Ao plays the role of a. In the a model the corre-
sponding term is
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equation. Let us do the same for the 0 model. The Hamilton equations

rr; =a;rr' —rr;(orr)+ (a+ V') a, (i 0)

permit one to express o. in terms of ~;, z;, and a:

1 Zlr~;+z;
(g+V +& a+V

The Lagrangean is

Z = —,
' [[~~'/(a+V')(a+V'+~')]+ [k /(a+V +rr )]+a[. (i 2)

This Lagrangean is invariant under the time-dependent
gauge transformation with gauge condition

x+
2 2

+"
e+V +z @+V

7l le 0
(x+ V

(19)

a e —E.

(i 3)

In terms of the "potentials" ~; and e the gauge invari-
ant Lagrangean I, in contrast to electrodynamics, is
nonlocal, and Lorentz invariance is not manifest. This
can be traced from the locality and Lorentz covariance
properties of the constraints in both cases. In elec-
tromagnetism the constraint equation is the fourth com-
ponent of a vector equation and is diA'erential, while in
the o model the constraint equation is a scalar equation
and does not contain derivatives.

In accordance with the general procedure one must fix
the gauge. Since the transformation (13) is nonlinear it
is more convenient to work in the Hamiltonian formal-
ism. The momentum conjugate to the constraint C(cr) is

G =rrcr/cr~ (i4)

in order to fix the (ghostless) gauge, one has to add to
the Hamiltonian Eq. (4) the term hs r whose Poisson
bracket with C is a nontrivial function of C and G only.
In order to make the resulting Hamiltonian as simple as
possible we choose the following gauge-fixing term:

4z
f(p) (20)

where f(p) is a running coupling constant.
This energy gap in the 1/N expansion is associated

with the expectation value of the field a. This seemingly
contradicts Elitzur's theorem, since according to Eq.
(13), a is a gauge-variant quantity. However, the 1/N
expansion is performed with the Hamiltonian of Eq. (17)
which includes the gauge fixing term of Eq. (15). After
the gauge fixing e is no longer gauge variant. In this
gauge a is equal to the following quantity:

a=
2 cr rr, 6;z

—cr;cd/cr re
—

—,
' Va;Vo.;, (2i)

The quantum a model in (1+1) dimensions is a non-
trivial solvable quantum field theory. Perturbatively the
spectrum of the theory has no energy gap, i.e. , it has
massless excitations. However, the 1/N expansion
(confirmed by the exact solution) shows that the true
(nonperturbative) spectrum has no zero modes, but rath-
er N massive particles with mass

hsr = (cr —1)—1 2 2 (rrcr)2 1 (rrcr)2

Indeed

[hs r, CJ =rrcr =G(C —1).

The resulting Hamiltonian is

H+h+hsr = —,
'

rr + —,
' (Vcr) + —,

' a(cr —1).

(i 6)

(17)

1L=-
a —V

1 2 1+ —a,
2 2

It coincides with the standard Hamiltonian used to
quantize the model. Thus the standard quantization is,
in fact, ghostless. In this gauge the Lagrangean for "po-
tentials" simplifies to

which is invariant under the gauge transformation Eq.
(6). This expression can be easily derived from the
equations of motion that follow from the Hamiltonian
Eq. (17) using the constraint and the gauge condition
C=o —1, G =rrcr/cr =0.

Viewing the o. model as a gauge theory, it is interest-
ing to note that this mass generation is a complete ana-
log of mass generation by the dynamical Higgs mecha-
nism (or as it is sometimes called dynamical gauge-
symmetry breakdown). Indeed, in the Higgs model
the field N, which (before the gauge is fixed) is a gauge-
variant quantity, acquires a nonzero vacuum expectation
value. The mass gap is generated in the spectrum of
the theory by means of this vacuum expectation value.
Analogously in the cr model the field a (which before
gauge fixing also has nontrivial transformation properties
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under the gauge group) acquires a vacuum expectation
value, thus generating an energy gap in the spectrum.

The difference between the two cases is that, while in

the Higgs model mass generation can be seen already on
the classical level, in the o model the effect is more deli-
cate and can be discovered only after quantum correc-
tions are taken into account. In this respect the model is
similar to the Schwinger model.

The existing mechanism of gauge-symmetry breaking
in the theory of electroweak interactions is considered by
many physicists to be unsatisfactory. The main reason is
the hierarchy problem inherent in theories with funda-
mental scalars. Even worse, recent lattice calculations
indicate that SU(2) as well as U(l) gauge theories cou-
pled to Higgs fields are trivial.

In spite of great eA'orts no realistic alternative mecha-
nism for giving mass to gauge fields was found. In all
these attempts the cure has been sought by the introduc-
tion of additional fields not required by phenomenology
(e.g. , technifermions, Higgs superpartners). It is amus-

ing to contemplate another possibility based on our ex-
perience with the nonlinear o. model.

Indeed in the O(N) o. model there are N —I funda-
mental fields, all massless in perturbation theory. How-
ever the exact spectrum of excitations contains N mas-
sive, in place of N —l massless, particles. The main pur-
pose of the Higgs mechanism is to convert a massless
vector field which has two polarizations into a massive
vector which has three polarizations. ' The o model in-
dicates that it is not possible to achieve this without the
introduction of any additional fields.

Authors are indebted to L. P. Horwitz for fruitful dis-
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