
VOLUME 59, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AUGUST 1987

Electron Correlation and Bond Alternation in Polymers
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The effect of electron correlation on bond alternation of polymers is clarified by calculation of the
electron correlation function. Instead of the extended Hubbard model, we start from the full Coulomb
interaction with any strength and range. In contrast to the other theories, our results disclose the follow-
ing: (1) When the interaction range is short the bond alternation monotonically decreases with increas-
ing strength. (2) Extension of the interaction range will increase bond alternation. (3) If the electron-
lattice coupling is strong, bond alternation is suppressed by electron repulsion; but if it is weak the bond
alternation is mainly caused by repulsion.

PACS numbers: 71.45.Gm, 63.20.Kr, 72. 15.Nj

Soliton theory has achieved success in the understand-
ing of many peculiar properties of polymers. In the early
version of this theory, only electron-lattice coupling was
taken into account; the electron interaction was neglect-
ed. ' But many experiments demonstrated the impor-
tance of the e-e interaction, such as the nonvanishing
negative spin density on alternate carbon atoms, the rel-
ative ordering between states 'Ag and 'B„, the optical
absorption associated with neutral soliton, etc.

In recent years many theories have been developed to
deal with the electron repulsion; among them are the
mean-field and perturbation theories, the valence-bond
method, Monte Carlo simulation, the renormaliza-
tion-group method, the Gutzwiller variational method,
and some others. Once the repulsion is involved, the
theory becomes a complicated many-body problem; one
of the unsolved problems is the eA'ect of electron interac-
tion on bond alternation. Although the above-mentioned
theories have studied this problem, the matter is still un-

certain since these theories have some defects. First,
they start from the extended Hubbard model, but it is
unsuitable for the polymers. In fact, in the Wannier rep-
resentation, the Coulomb interaction V(r —r') can be
written as

known, only for narrow bandwidth 8' are the diagonal
terms dominant. However, in polymers, O'=U=10 eV,
the off-diagonal terms have equal and even greater con-
tributions compared with the diagonal terms. Thus, in

order to get reliable results, one should use the full
Coulomb interaction rather than the extended Hubbard
model. Second, even within the extended Hubbard mod-
el, further approximations are used in practical calcula-
tions. Such approximations are reasonable only for weak
repulsion or in small-size systems.

In order to eliminate these defects, we present a new
method. First, instead of the extended Hubbard model,
we start with the Coulomb interaction. Second, we cal-
culate the electron correlation function from a full varia-
tional wave function without truncating it; then our
method can deal with the electron interaction with any
strength and any range.

If we suppose that the potential given to the ith elec-
tron at x; by the 1th atom on A'i is V(x; —Xt), then

H =g,. [ —(h /2m)V +g, V(x; —X,)].
Because of the screening by the other chains and the po-
larization of o. electrons within the same chain, the elec-
tron interaction can be described as

where

Vi jmn

i,~;m, n~i, s ~j,s' ~,s' n, s H'=gv(i j )

U ix; —x) i

[I + (x. —x . ) 2/a 2] &I2 a
exp —p

=J~d r& d r'p,*(r)p~*(r')V(r —r')p (r')p„(r).

If we take only the diagonal terms U= V„„.„„and
V„—:V„. „, and neglect all oA'-diagonal terms, H' is

reduced to an extended Hubbard model. As is well

(2)

where U and P denote the strength and the screening fac-
tor, and a is the lattice constant. Then the total Hamil-
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tonian reads

H =Ho+H + z Kg, (Xi+i —XI —a), (3)

principle. It can be decomposed as

u(1, 2, . . . , N)

=(1/2!)g, u, +(1/3!)g, k u; ~+
where the last term is the elastic energy.

According to Jastrow-Feenberg variational theory, '

the wave function of the ground state for a system with
repulsive interaction can be generally expressed as

+(1,2, . . . , N) =D[p]exp[u (1,2, . . . , N)],

where D [&p] is the Slater determinant consisting of
single-electron orbitals p„. u(1, 2, . . . , N) reflects elec-
tron correlation and can be determined by the variational

& =&+
I
H

I
+)/&+/+&

where u;~, u;~k, . . . are two-body, three-body, . . . correla-
tion factors. Since each cell has only one electron and
the interaction is repulsive, the density is not high, and it
is rare for three or more electrons to gather closely; then
the two-body correlation u;~ is dominant, and multibody
correlation can be neglected. Thus, the wave function
(4) is reduced to

e(1,2, . . . , N) =D[v]exp[ —,
' g, , u;, ]. (5)

With the eigenfunctions of Hp as the orbitals p„, the
total energy will be

=g e„+— dl J d2[P(1) —no]v(1, 2) [P(2) —no]+ —
J dl J d2P(1)P(2)v(1, 2) [g(1,2) —1]

OCC

Q
2

+ —,
' K pl (X~+ ~

—X~ —a ) + „d I
&

d 2 P ( I, 2 ) (V ~ u ~ q )8m"
2

+ J dl„d2 d3P(1, 2, 3)(Viui2) (Viui3),

where g(1,2) =P(1,2)/P(1)P(2) is the electron correlation function and P(1,2, . . . , n) is the n-body distribution func-

tion. The variational problem can be solved by the scheme of correlated basis functions. " First introduce a parameter

g before the factor u;J in Eq. (5); in this way, P(1,2, . . . , n
I g) will depend on g. Diflerentiating P(1, . . . , n

I g) with

respect to g, and then integrating over it, we can get combined integral equations for P(1) and P(1,2) as

( Ig)= ( I ). „g'„" „(, Ig')/ ( Ig')

r

+ —„dg'„d2„d3u23[P(1,2, 3 I
(')/P(1

I
(') —P(2, 3 I

(')]2»

P(1,2
I g) =P(1,2 I 0) exp' gu ~2+ „d(' d3(u ~2+ uq3)P(1, 2, 3

I
g')/P(1, 2

I
g')

r 4

+ —
~ d('J d3„d4u34[P(1, 2, 3,4 I

g') —P(1,2
I
g')P(3, 4

I
g')]/P(1, 2

I
g')

As we have explained previously the multibody corre-
lations are much less important than the two-body corre-
lation in our case, so that the convolution approximation
can be used to express the three- and four-body distribu-
tion functions P(1,2, 3) and P(1,2, 3,4), which appear in

the right-hand side of Eqs. (7) and (8), in terms of the
correlation function g(1,2) and its convolution integrals.
The explicit formulas for the convolution approximation
have been illustrated by the diagrams shown in Fig. 4 of
Wu and Chien. ' In this way Eqs. (7) and (8) have be-
come closed combined equations for the density distribu-
tion P(1) and the correlation function g(1,2). Thus
P(1) and g(1,2) can be solved numerically from Eqs.
(7) and (8) by iteration. Figure 1 gives g(1,2) for a
particular case. Substituting P(1) and g(1,2) into Eq.
(6), we can get the total energy, which is a functional of

u;J. In order to facilitate the variational procedure, let
us analyze the behavior of u;~ first. The wave function
(5) shows that exp( —,

'
u;z) is essentially the two-body

wave function of electrons i and j with the repulsive in-
teraction v(i,j ); then WKB indicates

u;, = —rlv(i, j) ",

where g and y are the variational parameters determined
by the minimization of the total energy. The numerical
result shows that y is nearly 0.5, which agrees with the
inference from WKB.

For any potential V(x —Xl) the orbitals w„can be ob-
tained by solving the one-electron problem of Eq. (I). In
order to make the calculation more transparent, we take
V(x —Xl ) as a square well centered at X~ with the height
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Vo=40 eV and the width b=0.6 A. We also take
a =1.22 A; then the bandwidth W=4to =14.92 eV, and
the electron-lattice-interaction coefficient is a =dt(a)/
da =9.65 eV/A. Three different elastic constants K
=48.88, 55.76, and 68.43 eV/A have been taken. They
correspond to electron-lattice coupling constants X =2a /
~toK =0.33, 0.29, and 0.23.

In the case of a half-filled band, the instability makes

repulsion for diAerent coupling X. The numerical results
are shown in Figs. 2 and 3. From these results we can
get the following conclusions:

(1) It is seen in Fig. 2 that when p) 1.5 the curve
u(U) declines monotonically. It indicates that, for a
repulsion with short range, the bond alternation will de-
crease with increasing strength. However, the extended
Hubbard model always gives an initial increase of bond
alternation. Apparently this contrast comes from the
off-diagonal part of the Coulomb repulsion. ' (2) Figure
2 also shows that when P decreases, the curve u(U) rises.
This indicates that extension of the repulsion range will
increase bond alternation. (3) Figure 3 shows that when
k increases, the decay of the curve u (U) becomes quick-

W„=a [n+ ( —1)"u],

where u is the amplitude of the bond alternation in units
of a; u is determined by the minimization of the energy
of the system. Our main concern is the dependence of u

on the strength U and the range a/p of the electron
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FIG. 3. The dependence of u on U for diAerent k.FIG. 2. The dependence of u on U for different P.
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FIG. 1. The correlation function g(x~, x2 —x~); the unit of x is a.
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er and the enhancement becomes weaker. It indicates
that, in the system with stronger electron-lattice cou-
pling, repulsion will suppress bond alternation rather
than enhance it; but, in the system with weak k and a
wide repulsion range, bond alternation is mainly pro-
duced by the repulsion rather than the electron-lattice
interaction.

This work was supported in part by the Laboratory of
Structure Analysis, University of Science and Technolo-

gy of China, and by the National Science Foundation of
China. Mr. Wei-Guo Feng made the program for the
correlation function and we are grateful to him. C. Wu
and X. Sun express their great gratitude to the Institute
for Molecular Science for the hospitality extended to
them during their visit there and for the use of the HI-
TAC M-680H and S-810/10 computers.

'W. Su, J. SchrieAer, and A. Heeger, Phys. Rev. B 22, 2099
(1980).

2H. Thomann et al. , Phys. Rev. Lett. 50, 533 (1983).
B. Hudson and B, Kohler, Synth. Met. 9, 241 (1984).

"J.Orenstein et al. , Phys. Rev. 8 30, 786 (1984).
5S. Kivelson and D. Heim, Phys. Rev. B 26, 4278 (1982).
Z. Soos and S. Ramasesha, Phys. Rev. B 29, 5410 (1984);

S. Mazumdar and S. Dixit, Phys. Rev. Lett. 51, 292 (1983),
and Phys. Rev. 8 29, 1824 (1984).

7J. E. Hirsch, Phys. Rev. Lett. 51, 296 (1983); D. Campbell
et al. , Phys. Rev. Lett. 52, 1717 (1984).

G. Hayden and E. Mele, Phys. Rev. B 32, 6527 (1985);
B. Horovitz and J. Solyom, Phys. Rev. B 32, 2681 (1985).

9D. 8aeriswyl and K. Maki, Phys. Rev. 8 31, 6633 (1985).
'oE. Feenberg, Theory of Quantum Fluids, Pure and Applied

Physics Series Vol. 31 (Academic, New York, 1969).
''S. Chakravarty and C. Woo, Phys. Rev. B 13, 4815 (1976);

X. Sun, M. Farjam, and C. Woo, Phys. Rev. B 28, 5599
(1983).

'2F. Wu and M. Chien, J. Math. Phys. 11, 1912 (1970).
' During the revision of this manuscript, we received a pre-

print from S. Kivelson, W. Su, J. SchrieAer, and A. Heeger.
They included some oA-diagonal terms (bond charge interac-
tion) and also found that the dimerization will decrease mono-
tonically with increasing the electron repulsion.

834


