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We present rigorous results on a phase in antiferromagnets in one dimension and more, which we call
a valence-bond solid. The ground state is simply constructed out of valence bonds, is nondegenerate, and
breaks no symmetries. There is an energy gap and an exponentially decaying correlation function.

Physical applications are mentioned.

PACS numbers: 75.10.Jm

There is currently considerable interest in the ground-
state properties of quantum antiferromagnets. In the
one-dimensional case, it has been argued by Haldane!
that Heisenberg antiferromagnets have an energy gap
for integer, but not half-odd-integer, spin. Neutron-
scattering data on CsNiCl;, a highly one-dimensional
spin-1 antiferromagnet, support this claim.? It has also
been argued by Anderson’ that two-dimensional antifer-
romagnets can have disordered ground states. The na-
ture of these ground states may be important in the
theory of high-T, superconductors.*

A convenient basis for spin-singlet states of a spin
s =1 antiferromagnet consists of all possible products of
pairwise contractions of spins to form singlets (known as
valence bonds): (1|-|1). For an s=1 chain with a
special ratio of first and second nearest-neighbor interac-
tions it was shown by Majumdar and Ghosh? that the
two exact ground states are given by the states with
purely nearest-neighbor valence bonds. We represent
these dimerized states in Fig. 1 by drawing lines between
the pairs of spins which are contracted. These ground
states have a translational symmetry broken from period
1 to period 2, ultrashort-range correlations, and, as we
will prove in a companion paper,® an energy gap. The
pure nearest-neighbor model, which was solved by the
Bethe Ansatz, is believed to have a unique ground state
with power-law correlations and no gap. This ground
state can be thought of as a resonating-valence-bond
state® in which quantum fluctuations restore the transla-
tional symmetry and mix in bonds of greater length. The
absence of Néel order is believed to be a general feature
of one-dimensional antiferromagnets. On the other
hand, Néel order is generally expected to occur in two
(or more) dimensions at zero temperature. However, it
was suggested® that a disordered resonating-valence-

. — — — —

FIG. 1. The spin-i— dimerized valence-bond states.

bond ground state might occur in some two-dimensional
s=1% cases: triangular lattice or square lattice with
next-neighbor couplings. The latter is relevant to the
copper-oxide planes in high-T, superconductors.*

In this Letter and the companion paper,® we will study
exactly solvable Hamiltonians, in dimension one and
more, with ground states constructed simply out of
valence bonds, which have quite a different character
than the Majumdar-Ghosh model. Unlike the dimerized
ground states of Ref. 5, our models have unique ground
states with no broken symmetries. As in the model of
Ref. 5 there is a gap and short-range correlations. This
ground state, which we call a valence-bond solid (VBS),
appears to be a good approximation to the ground state
of the realistic spin-1 chain. We suspect that it may be a
good approximation in other physically relevant cases as
well. The existence of a short-range, nondegenerate
phase in antiferromagnets was first suggested, for the
one-dimensional case, by Haldane.! We present the first
exact solution exemplifying this phase in one dimension,
and extend the results to higher dimension.

We extend the notion of valence bonds in a natural
way to higher spin. Spin s is obtained by symmetrization
of 2s spin-+ variables. Thus, any spin-singlet state can
be written with 2s valence bonds emanating from each
site and terminating on different sites. (The symmetri-
zation implies that we do not distinguish the 2s different
bonds ending at a given site.)

Our simplest model, and the one with which we will be
the most concerned, is an s=1 chain. We first present
the ground state and then give the Hamiltonian. The
VBS ground state is the (unique) state with a single
valence bond connecting each nearest-neighbor pair of
spins (see Fig. 2). This state was first introduced (as far
as we know) in the discussion of the large-n limit of
SU(n) chains.” Note that, unlike in the dimerized s = +
ground state,® the translational symmetry is unbroken.
To find a Hamiltonian for which this is the ground state,
note that the presence of a valence bond between each

FIG. 2. The spin-1 valence-bond-solid state.
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neighboring pair implies that the total spin of each such
pair cannot be 2. (After contracting two of the s =%
variables to form a singlet, the remaining s = +’s could
form either a triplet or a singlet.) Thus, we choose our
Hamiltonian to be a sum of projection operators onto
spin 2 for each neighboring pair:

H=ZiP2(Si+Si+l)
=Z,~[%S,"S,‘+|+é—(si'si+1)2+%]. (1)

Clearly, the ground-state energy is zero. We will calcu-
late the exact ground-state correlation function below
and prove the existence of a gap in Ref. 6. For a finite
chain with open boundary conditions, there are several
ground states, but we will prove in Ref. 6 that there is a
unique ground state in the infinite-volume limit.

Various generalizations of this model immediately
suggest themselves. The most interesting one is perhaps
an s =32 anitferromagnet on a hexagonal (honeycomb)
lattice. The VBS ground state has a single valence bond
connecting each neighboring pair. The Hamiltonian is a
projection operator onto spin 3 for each neighboring pair.
The VBS state has no projection onto spin 3 for any pair
because two of the six effective spin 3 ’s on each pair of
sites are contracted to form a singlet, allowing a max-
imum possible spin of 2. We will prove in Ref. 6 that the
correlation function decays exponentially for this model.
This implies that the ground state is not Néel ordered.
We believe that there is a unique ground state in this
model in the infinite-volume limit and that there is a gap,
but we are unable to prove either of these conjectures.
In general, there is a solvable model with a VBS ground
state whenever 2s equals the coordination number of the
lattice. The ground state has one valence bond on each
lattice link and the Hamiltonian projects out spin 2s for
each neighboring pair. More generally, there are solv-
able models with 2s equal to an integer multiple, n, of
the coordination number, the ground state now contain-
ing n valence bonds on each lattice link. The Hamiltoni-
an is a sum of projection operators for pairs of neighbor-
ing spins, onto spin s’ > 2s —n, with positive coefficients:

H=Y %

(j) s'=2s—n+1

aslPS'(Si+Sj), (2)

with all ag.> 0. We refer to such a ground state as a
valence-bond solid because the valence-bond structure
mimics the lattice. This state can only exist if the lattice
type and spin magnitude are commensurate in the way
described above.

On the basis of the rigorous results mentioned above
for s =1 in one dimension and s = % on a hexagonal lat-
tice, it is tempting to conclude that VBS states might
generally have exponential decay, a gap, and no Néel or-
der. However, this may not be the case in general. We
will show® that the VBS state on a Cayley tree actually
has Néel order for sufficiently large coordination num-
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ber. Thus, we might expect Néel order for regular lat-
tices of sufficiently high coordination number and dimen-
sion. We will relate this issue to the properties of certain
random walks on the same lattice.® We generally refer
to the VBS phase as the phase with a unique ground
state, exponential decay, a gap, and no Néel order. We
expect that it occurs for a range of Hamiltonians includ-
ing the solvable ones and, in one dimension, the realistic
ones. By the VBS state, we mean the state constructed
simply out of valence bonds, as described above. With
this terminology some Hamiltonians with a VBS ground
state may not be in the VBS phase.

Other simple valence-bond ground states also exist
which, unlike the VBS state, have only a period-2
translational symmetry. We will generally refer to these
as dimerized ground states. The simplest example is the
s =% chain of Majumdar and Ghosh®:

H=Y,P3,(S;+S;+1+S;+2)
=33,0S:'Si+1+ 7S Sit2+ 71, (3)

where P3/, projects onto spin 3. The dimerized states of
Fig. 1 have neighboring pairs of spins combined to form
a singlet, and therefore each group of three neighboring
spins is in an s = ¥ state.

This model has a direct generalization for arbitrary
spin.® For an s=1 chain, a solvable Hamiltonian is a
sum of projection operators onto spin 0, 2, and 3, with
positive coefficients, for each group of three neighboring
spins. The dimerized states with double valence bonds
between pairs of neighboring spins (see Fig. 3) are
ground states, since two of the spins in each group of
three neighboring spins are contracted to form a singlet
so that the total spin of the three spins is necessarily 1.
The VBS state is not a ground state in this case, since in
that state groups of three neighboring spins have a pro-
jection onto s=0. We expect that the two dimerized
states are the only ground states. This construction gen-
eralizes to arbitrary spin 5.8 H is a sum of projections
onto all spins but s, with positive coefficients, for each
group of three neighboring spins. The ground state has
2s valence bonds on every second link.

There also exist Hamiltonians with partially dimerized
ground states. Two such states for an s =2 chain are
shown in Fig. 4. To construct a Hamiltonian for which
these are the ground states, we begin with the sum of the
projections onto s = 3, 7, and ¥ for each group of three
neighboring spins. The states in Fig. 4 are ground states,
since each group of three neighboring spins contain three

s/ /4a 4/4a /| /ma .

.. |3 /a /a O a 4a
FIG. 3. The spin-1 dimerized states.
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FIG. 4. The spin- 3 partially dimerized states.

valence bonds and so have a maximum spin of s=%.
The fully dimerized states which alternate between three
and zero valence bonds between adjacent sites are also
ground states. We expect that these fully dimerized
ground states can be eliminated by adding to the Hamil-
tonian the projection onto s =3 for each pair of adjacent
spins.

We now outline the calculation of the exact correla-
tion function for the s=1 VBS model (more details will
be given in Ref. 6). We label the two states of a spin- ¥
variable as y,, where y,=(+) and y,=(—), and
{(4+),(=)} is the standard S, eigenstate basis. We will
define a raised index by multiplication by ¢: y*= 6"”1//,3.
Here €°? is the antisymmetric tensor with ¢'2=1, and we
use a summation convention for repeated indices. The
Hermitian-conjugate state to y, will be defined with a
raised index w'® The normalization is given by
y/*"wﬁ=5;§’, where 6§ is the Kronecker-6 tensor, the unit
matrix. A valence bond between two spins corresponds
to the state y*® y,.

Our notation for higher spin is based on the represen-
tation of spin s as 2s symmetrized spin-+ variables.
Thus, we write a spin-1 variable as y,3=(y,®yz+y;
®W,,)/\/5=wﬁ,,. The VBS state for an open chain of N
spins is

X:IIV+| =V¥q,0,® Waza3® Vaya,® v/a‘a5® e ® VI“N”N+1’

where the pairs of symmetrized indices label the spin-1
variables along the chain. The basic result needed to ob-
tain the correlation function is the ground-state normali-
zation, x,}ﬁ;lx;’;”'. This is given by a product of N fac-
tors (84'84'7 !+ 85,85 "). Expanding the N factors and

contracting all indices gives a geometrical sum which can
be evaluated exactly, giving

xTﬁl Z:I/v+1= 3NQ__1 65:80N+|+6B1 SN+ 4)

Bn+1 P BN +1 Bn+1%ay

Acting on the VBS state with the spin operators, we find
that S&S? breaks the string of valence bonds on one of
the two links adjacent to site O and on one of the two
links adjacent to site r, producing a product of two VBS
states with the spin indices contracted with two Pauli
matrices. Thus, the correlation function is determined
by (4). We find, for an infinite chain,

(S8Shy=5%(—1)"%37" (forall r > 0).

Thus, the correlation function decays exponentially with
correlation length 1/In3=0.9.
Our solvable Hamiltonian of (1) is a special case of

the general bilinear-biquadratic Hamiltonian
H=Y1S:"S;+1 —B(S;"S;+1)?],

with = — +. The model with =1 has been solved by
the Bethe Ansatz method.® It has a unique ground state
with no gap and appears to have power-law decay by
standard field-theory arguments. We expect that B=1 is
a critical point separating the VBS and dimerized phases
(for B< 1, and B> 1, respectively). Translational sym-
metry is broken in one phase, but not the other. Ex-
ponential decay and a gap hold in both. A critical theory
of this phase transition is given by Affleck'® and Affleck
and Haldane.'® This picture is supported by finite-chain
calculations.!! For a finite even chain in the dimerized
phase there is a unique ground state which is the sym-
metric combination of the two dimerized states. There is
also an exponentially low-lying momentum-z singlet
state which is the antisymmetric combination. For a
finite odd chain, the ground state has spin 1 since there is
one unpaired spin. We gave Hamiltonians above which
had the simple dimerized ground states of Fig. 3. We
can support this phase diagram by using the simple VBS
and dimerized states as trial ground states for arbitrary
B. The expectation of H (per link) in the VBS, dimer-
ized, and Néel states is (— 3 —28), (—1—88/3), and
(—1—2p), respectively. Thus, the Néel state never has
lowest energy while the VBS state is lowest for g < 1,
and the dimerized state for 8> +. Of course, improving
these variational VBS and dimerized states would
change the estimated critical value of B.

For the realistic Hamiltonian with =0, the energies
are — %, —1, and —1. The exact value, obtained from
finite-size extrapolation'? is about —1.40. Since the
VBS state is only higher in energy by about 0.07, it ap-
pears to be a good variational ground state. Perhaps
more importantly, it provides a simple, intuitive picture
of the nondegenerate massive phase.

A similar picture of the S dependence of the ground
state is obtained from the large-n limit.” An SU(n) gen-
eralization of the bilinear spin-1 chain is obtained by let-
ting the indices a run over 1,2,3,...,n. For the bilinear
Hamiltonian, the VBS and dimerized states discussed
above are both ground states in the large-n limit.” This
is so because in that limit, H simply counts the number
of nearest-neighbor valence bonds. The biquadratic
term, in the large-n limit simply counts the number of
nearest-neighbor double valence bonds.® Thus, the
ground state is the VBS state for 8> 0, and the dimer-
ized state for 8 < 0. A first-order phase transition occurs
at p=0. For the ordinary SU(2) case we expect the
transition to be second order. °

A difference between integer and half-odd-integer spin
chains, first predicted by Haldane,'! emerges from the set
of simple valence-bond states, as was observed earlier, in
the context of the large-n limit.” While integer-spin
chains can be in dimerized or VBS states, half-odd-

801



VOLUME 59, NUMBER 7

PHYSICAL REVIEW LETTERS

17 AUGUST 1987

integer spin chains are necessarily at least partially
dimerized. Of course, if the Hamiltonian is modified,
the valence bonds could “resonate”® and the broken
translational symmetry could then be restored. If this
happens, leading to a unique ground state, the rigorous
results of Affleck and Lieb!? prove that there is a vanish-
ing gap for half-odd-integer s. On the other hand,
integer-spin chains can have ground states of unbroken
symmetry with a gap, as our example proves. Thus, we
have rigorously established that there is a difference be-
tween integer and half-odd-integer spin chains.
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