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Histograms of Helicity and Strain in Numerical Turbulence
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Histograms of the normalized values of the helicity and the smallest principal component of the rate
of strain are found for one realization of a 128 isotropic simulation of forced turbulence. In regions of
high dissipation the strain has a structure indicating sheets. Peak-to-valley ratios in the helicity histo-
grams are less than in other numerical flows and this ratio decreases further when the helical large scales
are filtered or active regions characterized by the strain are sampled.

PACS numbers: 47.25.-c, 47.30.+s

To investigate the alignment of vorticity and strain
and to study recent claims' concerning the importance
of helicity in numerical turbulence this Letter analyzes
historgrams of helicity and strain for a simulation of
forced turbulence. Helicity could impose a constraint
on solutions of the Euler equations because it is a second
quadratic invariant of the Euler equations in addition to
the kinetic energy and because it is related to the non-
linear term in the rotational form of the Navier-Stokes
equation
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is 1, because in regions where this is true the relative
nonlinear term is small and the kinetic-energy cascade is
inhibited. It has also been suggested that because the
normalized helicity is not Galilean invariant these con-
cepts are not applicable for general nonhomogeneous
turbulent flows. To examine these predictions experi-
mentally both the velocity and vorticity would have to be
measured simultaneously, a dificult but not impossible
task that has been attempted. It is much easier to do
the analysis with a numerical simulation, where all of the
flow information is known, but in that case there can
be questions about whether the calculation is at high
enough Reynolds number to allow one to comment on
the influence of helicity on small-scale turbulence.

Some numerical flows where the probability density of
the normalized helicity has been presented are a channel
flow, ' a particular time in a Taylor-Green flow, ' and de-
caying turbulence in a periodic box. Strong peaks for
the normalized helicity of the nonfluctuating velocity and
vorticity at ~ 1 are observed in the center of the 32
channel' but not throughout the channel ~ The Taylor-
Green flow shows strong peaks in the helicity histogram
at 1 in regions of low dissipation, but again not
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= /u. ro/ + /uxro/, where co=Vxu is
the vorticity. It has been suggested that the invariance
of helicity increases the probability of the flow being Bel-
trami type; that is that the normalized helicity
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throughout the flow. Helicity profiles for decaying tur-
bulence on a 32 mesh are strongly peaked at + 1, in-
dependent of initial conditions. A more recent analysis
of numerical sheared and strained turbulence with up to
128 nodes and of channel flow with 192 x 129 x 160
nodes does not show any indication of large normalized
helicity.

It has also been suggested that the helicity within
bands in Fourier space has a strong peak at ~ 1. If
these bands are within the inertial subrange, it would
suggest a local Beltrami character that might inhibit the
nonlinear terms responsible for the turbulent energy cas-
cade. While the helicity structure within Fourier bands
is not thoroughly investigated in this Letter, the helicity
distribution for structures associated with the turbulent
cascade is reported.

In addition to historgrams of normalized helicity, this
Letter will consider histograms of the smallest eigenval-
ue of the rate of strain and of vortex stretching. To ana-
lyze the strain, histograms of

are plotted, where a+P+ y=0, with a )P ) y, are
the eigenvalues of the strain tensor e;z =

2 1t)u;/t)xz
+t)u~/t)x;j and

~ ey ~ =(g, e;~) 'l is the absolute magni-
tude of this tensor. Related quantities that have been an-
alyzed are histograms of vortex stretching,
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and the angle between the eigenvector p associated with
the smallest component of the rate of strain p and the
vorticity,

D=p a)/( ro(.

All of these quantities have been normalized such that
they lie between —

1 and 1. co;e;J.co~ is the rate of pro-
duction of m and, on the assumption of isotropy, ' is re-
lated to the velocity-derivative skewness
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and on the assumption of homogeneity and isotropy, ' C
is related to S„by

(eu //ex / ) =
3 e;Jegkeg;. (10)

All of the results to be presented are from one time
realization of a 128 forced pseudospectral simulation of
the incompressible Navier-Stokes equation in a three-
dimensional periodic box. The analysis has been re-
peated with other realizations and identical results are
obtained to within statistical error. The simulation was
intended to represent statistically steady isotropic tur-
bulence. To maintain the kinetic energy the velocity was
forced by keeping the kinetic energy in the first band of
wave numbers constant, with the modes in the first band
interacting with each other through the nonlinear terms.
Analysis of the dependence of the higher-order derivative
statistics in this calculation showed agreement with ex-
periments, suggesting that this simulation is a good rep-
resentation of the small scales of turbulence for the
Taylor-microscale Reynolds number R& up to 83. One
decade of the Kolmogorov k was observed. The
statistics and graphics suggested that the strongest eigen-
vectors of the rate-of-strain tensor would be compressive
and aligned perpendicular to the vorticity. The structure
of the strain field will be presented first so as to define
the conditional sampling used for the helicity.

Since the a component of the rate of strain is always
greater than 0 and y is always less than 0, historgrams of
the P component of the rate of strain are considered be-
cause the sign of P determines whether the local struc-
ture of turbulence is sheetlike or tubelike. If P is greater
than 0 then there are two components of the rate of
strain along which the fluid is stretching and one com-
ponent along which it is being compressed, which sug-
gests that the local structure will be sheetlike. If P is less
than 0 then there will be two compressive components
and one stretching component of the rate of strain, which
suggests tubelike structures. A third possibility is that

P =0, which indicates that the flow is locally two dimen-
sional.

Figure 1 plots the historgram of the normalized P
strain A. For all the historgrams to be presented there
are eighty bins between —

1 and 1. The histograms of A
have been normalized such that their integral is 1. The
peak in Fig. 1 is at —, , which is equivalent to values of
(a, P, y) that go as (3, 1, —4). This is consistent with the
observation that the compressive component of the rate
of strain tends to be largest. By (9) this implies that a
histogram of C should peak at negative values, which by
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C is related to the smallest component of the rate of
strain by

(9)

(10) would be necessary to ensure a negative value of S„.
This is found, with the peak of the histogram of C at
—

1

Conditional samples based on the dissipation being 2
and 4 times its mean are also shown in Fig. 1. These
samples represent 10% and 3% of the nodes. The ten-
dency for A to be greater than 0 becomes more pro-
nounced where the dissipation is large and suggests that
the dissipative structures of turbulence are sheets. Vor-
tex sheets are a product of an inviscid Taylor-Green cal-
culation, '' and a recent calculation' with the code used
here shows that two oppositely directed vortex filaments
evolve into a dissipative structure characterized by a
double vortex sheet.

Because of vortex stretching, the vorticity should be
aligned with positive components of the rate of strain,
that is with a or P, the eigenvectors associated with the a
and P components of the strain. The histogram of D is
strongly peaked at ~ 1; that is, P is aligned with the vor-
ticity ro, with 25% of the points having

~
D

~
) 0.925 over

the entire flow and more than 60% of the points with

~
D

~
) 0.925 when the flow is conditionally sampled for

the dissipation 4 times its mean. If it is assumed that the
vorticity and P are perfectly aligned, then the histogram
of A between —

1 and 1 maps onto the histogram of 8
between —0.5 and 0.5. Figure 1 shows the histogram of
8 between —0.5 and 0.5 (shown as the histogram of 2B
between —

1 and 1) to demonstrate this. Histograms of
B when the flow is conditionally sampled based upon the
value of A have confirmed the relationship between A
and B. Because B is formed from the nonlinear terms in
the vorticity equation associated with vortex stretching
and the turbulent cascade, the relation between A and 8
suggests that the structures responsible for the turbulent
cascade are sheetlike.

It has been shown for the forced flow and a numeri-
cal homogeneous shear flow that as the value of the dis-
sipation used for conditionally sampling A is raised,
there is an asymptotic profile for the histogram that
peaks at A =0.5. To demonstrate a possible connection
between these histograms and the derivative statistics
calculated before, assume that A is 0.5 everywhere and
B is 0.25 everywhere. If vorticity and strain are assumed
to be uniformly distributed, then by (3) and (10) S„ is
—0.48, in good agreement with the value actually calcu-
lated. This shows that at least one derivative statistic
can be predicted solely upon arguments for alignment of
the small scales, without reference to intermittency.

Figure 2 plots histograms of the helicity without con-
ditional sampling, without conditional sampling but with
the first two wave-number shells filtered out, conditional
sampling based on the dissipation greater than 4 times
its mean, and conditional sampling based on whether A
is less than 0 or greater than 0.75, that is whether the
flow is tubelike with low dissipation or strongly sheetlike
and dissipative. The histograms have been normalized
such that P(1) =1. The conditional samples over 4 are
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FIG. l. Histograms of the normalized P strain A, unlabeled histogram, over the entire flow; X, A conditioned by the dissipation

greater than twice its mean; A, 8 conditioned by the dissipation greater than 4 times its mean; and histogram, B, of twice the nor-

malized vortex stretching 2B conditioned by the dissipation greater than 4 times its mean. The area under each curve is l.

over 20% and 10% of the nodes, respectively. The asym-
metry that appears in the histogram for the entire field is
due to the helicity in the forcing modes, which is main-
tained throughout the calculation. Some of the helicity
from the forcing is transferred to the second wave num-
ber, but very little is found in higher wave numbers. For
comparison the helicity in the first four shells is 5.22,
2.59, 0.33, and —0.21 and the product of the magnitude
of the velocity l

u
l
=(2E)' and the vorticity l

ro
l

in

those shells is
l

u l l
ro

l
=7.70, 5.82, 5.00, and 3.57,

which is consistent with the —
—, subrange plotted previ-

ously. Figure 2 shows that most of the asymmetry
disappears when the first two wave-number shells are
filtered from the analysis. This filter does not signif-
icantly aAect the historgrams in Fig. 1. Since the higher
modes contribute the most to vortex stretching and tur-
bulent production, this suggests that Beltrami flows are
not important in small-scale turbulent production.
When a suggested anisotropic wave-number filter is ap-
plied the asymmetry in the normalized helicity distribu-
tion is greater, but is not significantly diferent from that
generated by random distributions. Coincidentally, the

only experimental attempt to measure the helicity distri-
bution has the same asymmetry and peak-to-valley ratio
as the overall distribution of this calculation.

Although the peak-to-valley ratio of the overall nor-
malized helicity histogram for this flow is much smaller
than earlier analyses, ' it is significant enough that its
source should be studied further. Figure 2 shows that
cos(0) =+ 1 is more likely in regions where the local en-

ergy dissipation t. =
l e;1 l

+ —, ro is large. Conditional
sampling based upon the kinetic energy, strain squared,
or enstrophy produces similar histograms. It should be
noted that none of these second-order quantities is a
direct measure of where the turbulent cascade is taking
place or where the nonlinear terms are large. Figure 1

suggests that a better indication of the active parts of
turbulent is the sign of A. Conditional sampling based
on the value of 4 shows a clear trend toward less symme-
try and a smaller peak-to-valley ratio in sheetlike re-
gions. Conditional sampling based on where the cosine
of the angle between P and m, D, is near + l does not
show any clear trends.

The conclusion of this analysis is that while there is
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FIG. 2. Histograms of the normalized helicity cos(9), unlabeled histogram, over the entire flow: F, with first two wave-number

shells filtered; X, conditioned by the dissipation greater than 4 times its mean; Y, conditioned by 2 less than 0.0; and Z, conditioned

by A greater than 0.75. Each curve is normalized such that P(1) =1.

not good evidence for strong alignment between the ve-

locity and vorticity or a large normalized helicity, there
is strong evidence for a diAerence type of alignment.

This alignment between the vorticity and strain and the
evidence for a universal distribution for the strain in re-
gions of high dissipation suggests a characteristic sheet-
like structure for the dissipative regions or turbulence.

Where this sheetlike structure is strongest, there is evi-
dence that the influence of helicity is even smaller. Evi-
dence was presented that this sheetlike structure is relat-
ed to the nonlinear terms responsible for vortex stretch-

ing and the cascade of energy to small scales. While Fig.
2 shows regions of the flow with enhanced normalized
helicity, there is no evidence that these regions are
directly involved in the turbulent cascade.
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