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Dynamical Suppression of Spontaneous Emission
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We study the influence of a strong resonant driving field on the spectral properties of a single, cavity-
confined, two-level atom. Under conditions of atom-cavity resonance, the lines of the Mollow resonance
fluorescence triplet are found to narrow with increasing driving-field strength, indicating a dynamical
decoupling of the atom from the vacuum field.

PACS numbers: 42.50.Hz, 32.70.3z, 42.50.DV, 42.50.kb

Cavity electrodynamics has been one of the central to-
pics of quantum optics in recent years, and interesting
new aspects of collective and single-atom behavior have
come to light. These eA'ects include, for example, the
enhancement' and suppression of spontaneous emis-
sion, vacuum Rabi splittings, photon antibunching,
optical bistability, and squeezing. In the present
Letter, we discuss new eAects related to the spontaneous
decay of cavity atoms in the presence of a strong driving
field. We find that a resonant driving field may, under
the conditions outlined below, act to suppress dynamical-
ly the rate of spontaneous emission and dramatically
modify the spectrum of resonance fluorescence.

An important aspect of the present problem is the
finite response time of the reservoir (photon modes cen-
tered at the cavity line) responsible for spontaneous
emission in the cavity. The existence of a finite reservoir
response time means that the atom-reservoir interaction
may be regarded as non-Markovian. In contrast to the
situation in free space, where non-Markovian quantum
electrodynamic eAects are predicted but are practically
nonobservable, ' we are confronted here with a situation

in which the non-Markovian aspects of the problem ap-
proach dominance.

Let us start with a description of the physical situation
that we have in mind. A single two-level atom is placed
in the center of a cavity and driven by a laser field. We
denote the atomic and laser frequencies by coo and mL,
respectively, and assume, for simplicity, that mL =coo.
Inside the cavity, the density of electromagnetic field
modes is assumed to display periodic peaks as a function
of frequency (as, for example, in an optical confocal
resonator), and, for simplicity, these peaks are assumed
to possess a Lorentzian profile. One of the cavity mode
peaks is taken to be exactly resonant with the atom, and
adjacent cavity mode peaks are ignored. The results ob-
tained here depend critically on the existence of spectral
peaks in the cavity mode structure; however, the exact
shape of the peaks is important only in terms of details.

Our aim will be to calculate the stationary resonance
fluorescence spectrum" of the atom as a function of
driving-field strength, and to note those novel features
that result from the finite memory time of the cavity
photon reservoir. The Hamiltonian of our system reads

H =cop + (e'"'cr+e ' 'tT" )+„ I k, Iak, ak dk, +& I kb I bk, bk, d kb

+
& g, (k, ) (at, cr+ cr ak )dk, +

q gb (kb ) (bk, cr+ cr bk, )d kb,

where the a's are the usual Pauli matrices describing a
two-level atom, and 0 is the Rabi frequency of the
external driving field. The operators (ak, ak ) and (bk„
bk, ) correspond, respectively, to modes associated and
unassociated with the cavity resonance. The coupling
constants g in Eq. (1) are proportional to the appropriate
photon mode densities. Since

I gb (kb ) I

2 is needed only
in the neighborhood of mo, it may be treated as a con-
stant. As specified above, Ig, (k)

I
is taken for conveni-

ence only to be a Lorentzian of half width I .
As a first step in calculating the fluorescence spectra,

we derive modified Bloch equations to describe the time
evolution of the atomic observables o., a~, and o3. In do-
ing so, it is convenient to introduce the reservoir response

!
functions

J dk, I g, (k, ) I 'exp[i[I@, I

—co, ]t1r

= y, z e
—rl tl (2a)

JI d kb I g(kb) I exp[i[1kb I co, it) =yba(t), (2b)

where co, is the cavity resonance frequency (assumed
equal to cop). Note that Eq. (2a) expresses the fact that
photon modes associated with the cavity resonance have
a finite response time I, while Eq. (2b) indicates that
the modes not associated with the cavity resonance
respond instantaneously. As will become clearer below,
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X. =Xb+X' (3)

the interaction of the atom with the cavity (background)
modes contributes an amount y, (yb) to the overall un-

driven spontaneous emission rate y, . We can thus write

our system, modified Bloch equations are derived by the
elimination of photon operators through a first-order ex-
pansion in yb and y, (Born approximation), with it kept
in mind that the Markov property does not hold for the
cavity resonance modes. In performing the expansion,
we assume that both photon reservoirs are initially in the
vacuum state (no fluorescence photons). The modified
Bloch equations ' take the form

(4a)

(4b)

the leading order in y, ) undergo Rabi oscillations at the
dynamically shifted frequency

(6a)

y'(n) =y, [l+r'/2(r'+ n')]+ -,'y, . (6b)

The decay rates of these components will thus be
suppressed from 3(y, + yb)/2 (for Q((I ) to y, +3yb/2
(for Q)&I ). Evidently, only the u component of the
Bloch vector can be completely decoupled from the cavi-
ty modes.

The decoupling of the atom from the vacuum field can
be understood qUalitatively if one models the vacuum
field as a classical fluctuating field that adds to the exter-
nally applied driving field. For example, a stability anal-
ysis of the semiclassical Bloch vector motion shows that
the decay of the u component is triggered exclusively by
driving-field fluctuations at the frequencies no~ A. In
the cavity, for 0 » I, vacuum-field-induced driving-field
fluctuations are substantially suppressed at these fre-
quencies. Alternatively, for 0 &)I, the laser and cavity
vacuum fields can be pictured as forming an eflective
field fluctuating slowly on the time scale A '. The sta-
bility of the u component of the Bloch vector can then be
seen to result from adiabatic following.

The above observations regarding the decay of the
Bloch vector suggest that the atom's high-driving-field
(0))I ) resonance IIuorescence spectrum will differ in
the following qualitative ways from the standard Mollow
spectrum. " The central component of the spectrum
(corresponding to the u component of the Bloch vector)
will be dramatically narrowed compared to its B « I
value if y, &) yb. Under the same conditions, the side-
bands should also be narrowed (though not as dramati-
cally as the central peak) and shifted. '

(5)u(t) =u(O) exp[ —y(n)tl,

where y(Q) = yb+ [y, I /(I + 0 )]. Interestingly, for
II )& I, y(II ) = yb. We conclude that in the high—
driving-field limit, the atom-cavity mode interaction does
not result in a misalignment of the Bloch vector from the
driving-field direction if it is so aligned initially. In
effect, one can dynamically switch off the effect of the
cavity vacuum field on the component of the Bloch vec-
tor along the driving field As will be discusse. d else-
where, this fact leads to a means of generating strongly
squeezed atomic fluorescence. If the background mode
density is small, as might be the case in suitably designed
optical or microwave cavities, the u component of the
Bloch vector may be stable for extended periods.

The other two components of the Bloch vector will (to

I

a(t ) = (i n/2) a3(t ) —y, r ~ e "t' '
cos [n (t —t ') ]a(t ')dt '

0
w1—i y„I J e ' ' sin[A(t —t ')] [[aq(t ')+ I]/2]dt ' —ybcr(t),

a (t) = —(i II/2)a3(t) —y, I e ' ' cos[A(t —t')]o (t')dt'
pl

+iy, l J e ' ' si n[Q(t —t')][[ a(3t')+ I]/21dt yt, a (t),
t

a3(t) =i Sl [o(t) —a (t)] —2y, I J e ' ' [I+cos[II(t —t')l][[a3(t')+ I]/2]dt'
1—iy, r„e '" "sin[n(t —t ')] [a(t ') —a~(t ')]dt ' —2yb [c 3(t)+ I].

The following comments should be made about the
above equations. (i) They are valid only in the sense of
the Born expansion in y, and yb. This means that y, and
yb should be much smaller than 0 and I . These equa-
tions do not describe, therefore, the regime of vacuum

n' n =n I+y, r/2(r'+n'
Rabi splitting, & =0, I =y, . They may also in principle
lead to some nonphysical effects (such as a negative
power spectrum). Such effects will be, however, of order
(y, /0 ) or (y, /I ) and may be corrected in the course
of a more systematic expansion. (ii) They contain the
usual (Markovian) contribution from the off-resonance
(background) modes. (iii) Terms associated with the
cavity modes have characteristic convolution-type mem-
ory integrals. ' The memory extends over the cavity
response time I . (iv) In the limit I )& Q, y„Eqs. (4)
reduce to the usual Bloch equations with y, = yb+ y, [as
indicated earlier in Eq. (3)].

By adding Eqs. (4a) and (4b), we obtain an expression
for the component of the Bloch vector u =cr+o, which
is parallel to the driving-field vector. In the limit of
small y„u can be written as
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G(z) cr(z) =K(z)+ cr(0)

(9a)

!

2I 2 3

part of the spe

S„(k)=Re~e
2 2 g G2; '(ik) K;(ik)o, + —'8ost 2 z cr3st+ l) —~ sl 3~St
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In Fig. 1, we show ofI'-axis resonance fluorescence
spectra calculated from Eq. (9b) for a variety of illustra-
tive situations. In Fig. 1(a), where the influence of the
cavity is weak, variations of the resonance fluorescence
spectra from the standard Mollow form'' are essentially
unobservable. In Fig. 1(b), on the other hand, the cen-
tral peak of the spectrum shows a strong narrowing as
the driving-field Rabi frequency exceeds the cavity-
resonance halfwidth I . In Fig. 2, we focus on the behav-
ior of selected peaks shown in Fig. 1(b).

In closing, we note that experimental study of the
eff'ect described here should provide interesting insight
into the fundamental problem of atomic dynamics in the
presence of coupling to finite-bandwidth, arbitrary-line-
shape reservoirs. Furthermore, the conditions relevant to
Fig. 1(b) should be experimentally realizable in optical
or microwave cavities. A more detailed analysis which
also addresses the statistical properties of the atomic
fluorescence and accounts for atom-field detuning will be
presented elsewhere.
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