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The S-matrix pole structure of the J = —,
'+ resonance in He is obtained from R-matrix parameters

for the system. Two poles are found on diAerent unphysical Riemann sheets. One is a conventional res-
onance that is primarily responsible for structure in the n-a total cross section. The other is a "shadow"
pole that contributes to the large values of the cross section for the reaction H(d, n) He at low energies.
It is the first experimental evidence for the existence of shadow poles in nuclear and particle physics.
The two-pole structure of the resonance accounts for diAerent peak positions and widths in the ampli-
tudes for the n ato-tal cross section and for the cross section for the reaction 3H(d, n).

PACS numbers: 21.40.+d, 24.30.—v, 25. 10.+s, 27. 10.+h

The J = —', + resonance in He located at E =60 keV
(center-of-mass energy) above the d tthres-hold is one of
the most famous in nuclear physics. It is responsible for
the pronounced bump that makes the low-energy cross
section for the reaction H(d, n) He larger than that of
any other thermonuclear process, and it causes a similar
feature in the n-e total cross section near 22-MeV in-
cident neutron energy. The most recent resonance pa-
rameter compilation' for light systems assigns it a total
width I =100 keV, with partial widths I „=Id =50 keV.
These parameters are presumed to correspond with the
position and residue of a pole in the S matrix that gives
asymptotically the relative amplitudes of outgoing to in-
coming waves for the reactions in the He system.

We report here the S-matrix pole structure for the
J = —', + resonant state resulting from R-matrix parame-
trizations of the He reactions. This structure has been
properly derived from the complex poles of the out-
going-wave Green's function, rather than the from the
real poles of the principal-value Green's function (i.e. ,
Heitler's K matrix) that are often used. We find two
poles located on diff'erent unphysical sheets of the two-
channel Riemann energy surface, both of which contrib-
ute to the experimental anomalies associated with the

z 3+J =
2 resonance.

One of these poles is clearly responsible for much of
the resonant behavior of the cross sections. Although its
position and residue give resonance parameters that
diAer somewhat from the expected values, it is the type
of pole described in the conventional lore surrounding
low-energy resonances. The other pole has properties
uncharacteristic of a conventional resonance, although
its eAect on the reaction cross section, especially, is quite
evident. It appears to be what Eden and Taylor termed
a "shadow" pole in their paper concerning elementary-
particle resonances, and is the first experimental evi-
dence of such phenomena.

We will first describe a correct procedure for obtaining
poles and residues of the S matrix from R-matrix param-
eters and relating them to resonance parameters. Then

E,=E, —fr/2 (2)

is a pole of S, with E, the "resonance energy" and I the
"total width" of the resonance. In Eq. (1), the outgoing-
wave logarithmic derivatives at channel radii r, =a„

L, (E) =r, (86,/'dr, )6, ' ~„=., (3)

depend on the channel momenta k, through the outgoing
spherical (Coulomb) waves 6„ thereby placing Ep on
some definite Reimann sheet of the energy surface.

The residue of S at the pole is a rank-one matrix,
ipppp, in which the vector pp has channel elements

pp, =(2kp, a, /Ã) '"6, '(kp, a, )g, y,g(k
~ pp) (4)

that depend on the components ()
~ pp) of the eigenvec-

tor
~ pp) belonging to the eigenvalue Ep. The complex

quantity

BL,1v=g()I.
~ pp)4, '~ pp) 8, ,+g y„' y,g

(s)

in the denominator of Eq. (4) corresponds to the normal-
ization of the complex-energy state

~ pp) over all space.
The first term, g~(k ~ pp), is the normalization inside

we will give —', + resonance parameters for the S-matrix
poles found in two diAerent R-matrix descriptions of He
reactions (one simplified and one complete) and compare
them with previous values. The paper concludes with a
discussion of the interpretation of the pole properties and
the evidence for them in the measurements.

To obtain S-matrix pole positions from R-matrix
eigenenergies Eq and reduced-width amplitudes y,& for
boundary conditions B„one finds an energy E =Ep such
that at least one eigenvalue of the complex "energy-
level" matrix,

=E 6 —Q, y, .[L,(E) —8, ] y, ,

is the same as Ep. In that case
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TABLE I. R-matrix parameters for the J = —,'states of He. Channel labels (c) are in

spectroscopic notation, with (d) meaning the d r-arrangement and (n) the n-a arrangement.
Eigenenergies E~ are center-of-mass values in megaelectronvolts relative to the d-t threshold.
Entries in the body of the table are values of reduced-width amplitudes y,~, also center-of-mass,
in units MeV'

c(J=-,' ) a, (fm)

1

0.083 7559
2

6.471 3043
3 4

13.735 7067 47.475 246

4S(d)
'D(d)
'D(d)
'D (n)

5. 1

5. 1

5. 1

3.0

—0.37
—2.00
—2.00
—0.59

1.1760678 0.069 3397 —0.495 5438 1.105 2421
0.168 8724 —0.272 9805 1.991 0681 1.984 7048

—0.048 4797 0.886 2475 0.095 8513 0.242 2464
0.376 8218 —0.156 2737 0.9994494 —3.855 6539

the nuclear surface on which the R matrix is specified,
and the second term corresponds to a bounded normali-
zation outside the nuclear surface in the channel region.
This second term can be obtained by analytical continua-
tion of the bound-state relation from the physical sheet
to the unphysical sheet on which Eo lies. %'ith this nor-
malization, the definition of partial widths as

(6)

is consistent with the definition in terms of the transi-
tion probability rate that one usually finds in time-
dependent treatments. A consequence of this definition,
however, is that the partial widths do not, in general,
sum to the total width I = —2ImE0.

The complete R-matrix analysis of reactions in the
He system at excitation energies below 21.5 MeV re-

quired four channels and four levels for J"=—,
' . The

parameters of this four-level description are given in
Table I. The first level is mainly associated with the
low-energy resonance under consideration here, the next
two with higher-energy D and D resonances in the d-t
channel, and the fourth serves primarily as a background
term, especially in the n-e channel.

A two-level fit to low-energy cross-section data in the
reaction H(d, n) He alone was reported in conjunction
with the latest measurements. For completeness, the
parameters of that two-level, two-channel (D waves in

the d tchannel are neglect-ed) fit are repeated in Table
II. The first level is again the resonance level, and the
second level serves primarily as a background.

"strength" =pttpo/r =g, r, /r, (7)

which is a measure of the magnitude of the residue com-
pared to the displacement of the pole from the real axis,
and also of the consistency of the partial widths with the

Since the cuts due to channel thresholds are automati-
cally built into the theory, the relatively simple analytic
structure of the R matrix (meromorphic, with poles only
on the real energy axis) leads to a more complicated
structure of the multisheeted S matrix. Applying the
procedure and definitions contained in Eqs. (l)-(3) to
the R-matrix parameters of Tables I and II, we searched
for poles of S in the vicinity of the d+t threshold on all
three unphysical sheets of the two-(arrangement) chan-
nel Riemann energy surface. Following Eden and Tay-
lor, we use the notation U~;~ and U(; ~~ for i or j =n, d to
denote the unphysical sheet on which k; and k~ change
signs when one moves from the physical sheet I' at
the same energy. Poles were found on sheets U(„~ and
U(„d~, which correspond to sheets I I and I I I in
the convention of Oehme. Partial widths were deter-
mined from the residues of the poles with use of Eqs.
(4)-(6). Values of the Coulomb function 6, at complex
energies were obtained from the elegant numerical sub-
routine of Thompson and Barnett.

The results for both sets of R-matrix parameters are
given in Tables III and IV. In addition to the resonance
energy, total width, and partial widths, we have also tab-
ulated a quantity called

TABLE II. R-matrix parameters from the two-level fit (see
Ref. 6), with labeling and units as in Table I. The eigenenergy
E2 was held fixed at 10 MeV.

1 2

0.021 626 10.000

TABLE III. J = —, resonance parameters from S-matrix
poles of the four-level R matrix of Table I. The center-of-mass
resonance energy E, and widths I are in kiloelectronvolts.
Only the S-wave partial width I d is given, since the 0-wave
partial widths are &0.05 keV. As explained in the text, the
partial widths sum to the product of the strength times I .

c(J= —,
' ) a, (fm) Sheet E, Strength

'S(d)
'D(n)

5.0
3.0

—0.278 64
—0.5570

0.958 38
0.277 81

0.483 04
1.517 53

U(n, d)

U(n)

46.97
81.57

74.20
7.28

25. 10
2861.6

39.83
68.77

0.875
402.5
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TABLE IV. J = —,
'+ resonance parameters from 5-matrix

poles of the two-level R matrix of Table II. The center-of-
mass resonance energy E, and widths I are in kiloelectronvolts.
As explained in the text, the partial widths sum to product of
the strength times I .

t.2

~ i-Re Snn i- y ~T

Sheet

U(n, d)

U(n)

Er

48. 10
78.94

74. 16
16.52

24.51
2542. 5

43.57
65.95

Strength

0.918
157.9

I.O

o.e

total. One expects the strength to be about 1 for isolat-
ed, narrow resonances that lie closest to the physical
sheet. In Ref. 6, following the conventions of Humblet,
we used a slightly difierent definition of partial widths,
and normalized them to sum to the total width. With
the more meaningful normalization convention used
here, that artificially imposed property has been discard-
ed.

The R-matrix parameters of Tables I and II give very
similar pole structures, with a "conventional" resonance
(strength = 1) on the Ut„d) sheet and an "unconvention-
al" one (strength&) 1) on the Ut„) sheet. In both the
two-level and four-level cases, the first level is primarily
( & 99%) responsible for the two S-matrix poles found
on diff'erent unphysical sheets. Since the results are so
similar, we shall refer only to those from the four-level
case in the subsequent discussion.

The conventional pole on U&„d) (the unphysical sheet
closest to P above the d-t threshold) is mainly responsi-
ble for the peak in the n-a total cross section, as is seen
from the calculated curve labeled (1 —ReS„„)——,

'
crT in

Fig. 1. The position and width associated with this pole,
E, =47.0 keV and I =74.2 keV, are somewhat smaller
than (but well within the errors of) the recommended'
values of E, =60 ~ 130 keV and I =100~ 50 keV.
Converting our value of E, to the corresponding labora-
tory neutron energy, 22. 124 Me V, we find good agree-
rnent with the values E, =22. 133 + 0.010 MeV and
I =76~ 12 keV that Haesner et al. ' extract from a
Breit-Wigner fit to their n-a total-cross-section measure-
ments. Our n-a partial width, I „=39.8 keV, also agrees
well with their value of 37+ 5 keV. However, since our
d-t partial width, I d =25. 1 keV, is not constrained to
add to the total width, we find a diA'erent ordering of
partial widths (I „&I d ) from that implied by their
Breit-Wigner parameters if I d is taken to be I —I „=39
keV.

The properties of the pole on the U(„i sheet are more
intriguing. Despite its apparently small width, I =7.3
keV, the pole is on a sheet far enough removed from P
that it causes no narrow resonance phenomena, as is
reflected in the sizes of the partial widths. The
significance of the small I is rather the following: Asso-
ciated with a pole on U(„) is a zero of the diagonal S-
matrix element S„„located on P at the same energy, as

o 0.4

0.2

20 40 60 80 loo )20 l40

-20—
Center-of-moss d-t energy (4A')

40

FIG. 1. J = —,
'+ 5-matrix amplitudes calculated as functions

of center-of-mass d-t channel energy from the R-matrix pa-
rameters of Table I. The curve labeled (1 —ReS„„) is propor-
tional to one-half the n-a total cross section oT, and the one la-
beled i S„d i is proportional to the a~, the cross section for the
reaction 'H(d, n) He. The pole positions are shown as direct
product symbols in the lower half of the complex energy plane
at the bottom of the figure, the lower symbol (the conventional
resonance) being on the U&„di sheet, and the upper symbol
(the shadow pole) on the Ui„i sheet.

was pointed out by Kato" for the case of two channels,
and can be seen in the more general analytic continua-
tion relations of Eden and Taylor. Because I is small,
the zero of S„„ in this case lies close to the real axis of
the physical sheet P. Through unitary constraints, the
zero forces the oA'-diagonal S-matrix element S„d to ap-
proach its maximum value of unity when E reaches
E, = 82 keV, as can be seen in Fig. 1 from the calculat-
ed curve labeled iS„d i

—erg [the cross section for the
reaction H(d, n)]. Figure I also shows that the second
pole induces eAects that are clearly visible in the dis-
placement and broadening of the peak of the cross sec-
tion for the reaction H(d, n) relative to that of the n a-
total cross section, explaining why the widths are not the
same when the resonance is observed in the n-a channel
and in the reaction H (d, n ) He.

Even more interesting from a theoretical standpoint is

that the pole on the U(„) sheet appears to be the first ex-
perimental evidence for what Eden and Taylor termed a
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shadow pole. The presence of a shadow pole on U~„~

alone (and not on Utd&) implies that only a pole in S„„
would persist in the absence of coupling between the n-e
and d-t channels. Thus, the pole structure we have

found suggests that the J = —,
' resonance in He is fun-

damentally an n-a resonance on the U~„d~ sheet. In the
presence of coupling between the d-t and n-a channels, a
second pole (the shadow pole) develops close to the real
axis on the U~„~ sheet that, through its associated zero on
the physical sheet, contributes to the large reaction cross
section that has made this resonance so important in

fusion energy applications.
We are grateful to D. Dodder, M. Nieto, J. Taylor,

and S. Whetstone for encouraging and informative dis-
cussions. We also thank L. Collins for providing the
Coulomb function routine of Ref. 8 and B. Schneider for
pointing out the work of Ref. 4. This work was support-
ed in large part by the Oftice of Basic Energy Sciences of
the U.S. Department of Energy.

~F. Ajzenberg-Selove, Nucl. Phys. A413, 1 (1984).
2R. J. Eden and J. R. Taylor, Phys. Rev. 133, B1575 (1964).
3B. Gyarmati and T. Vertse, Nucl. Phys. A160, 523 (1971).
4T. N. Rescigno and C. W. McCurdy, Phys. Rev. A 34, 1882

(1986).
~G. M. Hale and D. C. Dodder, to be published. Preliminary

results are described in Nuclear Cross Sections for Technolo

gy, edited by J. L. Fowler, C. H. Johnson, and C. D. Bowman
(National Bureau of Standards, Washington D.C., 1980), Na-
tional Bureau of Standards Special Publication 594, p. 650.

R. E. Brown, N. Jarmie, and G. M. Hale, Phys. Rev. C 35,
1999 (1987); see also N. Jarmie, R. E. Brown, and R. A. Har-
dekopf, Phys. Rev. C 29, 2031 (1984), and 33, 385(E) (1986).

7R. Oehme, Z. Phys. 162, 426 (1961).
8I. J. Thompson and A. R. Barnett, Comput. Phys. Corn-

mun. 36, 363 (1985).
9J. Humblet, Nucl. Phys. 50, 1 (1964).

' B. Haesner, W. Heeringa, H. O. Klages, H. Dobiasch,
G. Schmalz, P. Schwarz, J. Wilczynski, B. Zeitnitz, and
F. Kappler, Phys. Rev. C 28, 99% (1983).

''M. Kato, Ann. Phys. (N. Y.) 31, 130 (1965).

766


